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Abstract. Inconsistent code detection is a variant of static analysis
that detects statements that never occur on feasible executions. This
includes code whose execution ultimately must lead to an error, faulty
error handling code, and unreachable code. Inconsistent code can be de-
tected locally, fully automatically, and with a very low false positive rate.
However, not all instances of inconsistent code are worth reporting. For
example, debug code might be rendered unreachable on purpose and
reporting it will be perceived as false positive.

To distinguish relevant from potentially irrelevant inconsistencies, we
present an algorithm to categorize inconsistent code into a) code that
must lead to an error and may be reachable, b) code that is unreachable
because it must be preceded by an error, and c) code that is unreachable
for other reasons. We apply our algorithm to several open-source project
to demonstrate that inconsistencies of the first category are highly rele-
vant and often lead to bug fixes, while inconsistencies in the last category
can largely be ignored.

1 Introduction

In this paper, we present a severity ranking for inconsistent code. Inconsistent
code refers to a statement that is never executed on a normal terminating execu-
tion. That is, this statement is either unreachable, or any execution containing
this statement leads to an error1. The concept of inconsistent code is appealing
because it lends itself to be detected using static analysis – one simply has to
prove that none of the paths containing the statement of interest is feasible.
Hence, by using a sound over-approximation of the feasible paths of a program,
one can build a tool to detect inconsistent code that never raises false alarms
(at least in theory). Over the past years, several static analysis tools have been
developed that detect, among other things, inconsistent code (e.g., [2,12,18,20]).
We have seen interesting bugs rooted in inconsistent code being detected, e.g., in
the Linux kernel [7], in Eclipse [11], or in Tomcat [16]. However, not all inconsis-
tent code is worth reporting. For example, unreachable code, which is a special
case of inconsistent code, is often used deliberately or is unavoidable. Reporting
harmless instances of unreachable code would be perceived as false positives.

1 E.g., the violation of an assertion or a (user-provided) safety property. The concrete
definition of error depends on the tool.



2 Martin Schäf and Ashish Tiwari

Hence, it is vital to distinguish different reasons why code is inconsistent and
prioritize warnings based on this.

In this paper, we introduce three tiers of inconsistent code – doomed, demood
(doomed spelt backward), and unr code. Inconsistent code is categorized as
doomed if it is possibly reachable (i.e., we cannot prove that it is unreachable),
but any execution passing through it must lead to an error (violation of a safety
property). Inconsistent code is categorized as demood if it is unreachable because
any execution that would reach it must necessarily trigger an error earlier. In-
consistent code is categorized as unr if it is unreachable and not demood. We
present an inconsistent code detection algorithm that can categorize inconsistent
code as doomed, demood, or unr.

We show on a set of open-source benchmarks that this categorization can be
made with very small computational overhead, and that the proposed severity
levels help to identify critical inconsistencies easily. In most cases, code catego-
rized as doomed indicates a patchable bug in the program while code categorized
as unr tends to be less interesting and in the vast majority of cases not worth
patching. Our experiments further indicate that inconsistent code of category
doomed and demood is rare compared to unreachable code of category unr. An-
other observation is that false alarms, caused by imprecise handling of advanced
language features, such as multi-threading and reflection, are always categorized
as unr. Hence, by only reporting warnings of type doomed and demood, we obtain
a highly usable inconsistent code detection tool.

2 Overview

We motivate our severity levels for inconsistent code using the illustrative exam-
ples in Figure 1. Each of the four procedures, f1 to f4, has inconsistent code in
the then-block of the conditional choice. The reason why this code is inconsistent,
however, is different for each procedure.

In procedure f1, line 3 is inconsistent because on any execution passing
through line 3, o is guaranteed to be null which violates the (implicit) run-
time assertion in line 5 that o must be properly allocated before it can be de-
referenced. We categorize this type of inconsistent code doomed because it may
be (forward) reachable and inevitably leads to an error. This category comprises
what we want to report with the highest severity. For this category of inconsistent
code, the developer has to be notified because the only way to prevent an error is
to make this code unreachable. Later in this section we will show some real-world
examples of this case.

Procedure f2 contains inconsistent code in line 4. To reach this line, o has
to be null. This, however, would violate the implicit run-time assertion that
o must not be null in line 2. We categorize this case, where code is rendered
unreachable by an (implicit) safety property, as demood. Code in this category
often indicates that error handling is in the wrong place (e.g., a null-check of a
pointer that has already been de-referenced). While this is not necessarily a bug,
it certainly indicates confusion about the necessary error handling, which often
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1 void f1(Object o) {

2 if (o == null) {

3 // inconsistent

4 }

5 o.toString ();

6 }

1 void f2(Object o) {

2 o.toString ();

3 if (o == null) {

4 // inconsistent

5 }

6 }

1 void f3() {

2 Object o =

3 new Integer (123);

4 if (o == null) {

5 // inconsistent

6 }

7 }

1 void f4(Object o) {

2 int i=0;

3 if (o == null) {

4 i++ // inconsistent

5 }

6 assert (i==0);

7 }

Fig. 1. Four examples of inconsistent code. In each procedure, the then-block is in-
consistent. The procedures f1, f2, and f3 represent the shortest possible examples
for inconsistent code of category doomed, demood, and unr respectively. We added the
procedure f4 to clarify that inconsistent code is more than just forward or backward
reachability.

is an indicator for bit rot or unclear specifications. Code categorized as demood

will be reported with the second highest severity. While technically being plain
unreachable code, it still indicates there may be a potential risk of an assertion
violation.

In procedure f3, we have an example of unreachable code. Line 5 is un-
reachable because, in Java, new cannot return null. In this case, no run-time
assertion is involved in making line 5 unreachable and we categorize it as unr. We
report unreachable code of this category with the lowest severity (or even hide it
completely). There are many reasons why code in this category should not be re-
ported: in languages without pre-processor, such as Java, code is often rendered
unreachable on purpose (e.g., debug code). Furthermore, translating high-level
languages into simpler three-address code formats often introduces unreachable
code, e.g., through translation of conjunctions into nested conditional choices,
or inlining of finally-blocks in exception handling (see [1]). Also, unsound ab-
stractions, such as ignoring possible interleaving in multi-threaded code, may
introduce false positives which manifest as unreachable code.

Procedure f4 has inconsistent code in line 4. This procedure illustrates the
difference between unreachability and inconsistency. Unlike the previous exam-
ples, where the inconsistent code was either forward- or backward-unreachable,
the inconsistent code in this example is both forward- and backward-reachable.
Since line 4 is inconsistent and forward reachable, our algorithm will categorize
it as doomed and report it with a high priority.

Motivating examples. Figure 2 shows two occurrences of inconsistent code cat-
egorized as doomed by our approach. Both cases have been reported to the de-
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1 //@org.apache.jasper.el.JasperELResolver

2 public synchronized void add(ELResolver elResolver) {

3 super.add(elResolver);

4 if (resolvers.length < size) {

5 resolvers[size] = elResolver;

6 //...

1 //@org.apache.maven.repository.MetadataResolutionResult

2 public MetadataResolutionResult addError(Exception e) {

3 if (exceptions ==null)

4 initList( exceptions );

5 exceptions.add( e );

6 return this;

7 }

Fig. 2. Two examples of inconsistent code in the wild. The first example was found
and fixed in Tomcat. Line 4 guarantees that line 5 access the array out of bounds and
line 4 is forward reachable. The second example was found and fixed in Maven. Line 4
uses the list initializing incorrectly, thus, line 5 must throw an exception. In both cases,
our algorithm categorizes the inconsistent code as doomed because it is reachable and
must lead to an exception.

velopers and our fixes have been accepted. In the first example taken from the
application server Tomcat, the operator in line 4 is flipped resulting in an in-
evitable out-of-bounds exception being thrown in line 5. By inspecting the code,
it was easy to see that this was just a typo and the operands merely had to be
flipped. The second example is taken from Maven. Here, the procedure initList
is used in the wrong way. The author of this code assumed that initList has
a side effect on the field exceptions which is not the case. Even though our
analysis is not really inter-procedural, it detects that exceptions cannot be
modified by this call and hence detects that executing line 4 must lead to a
NullPointerException in line 5.

These are just two examples of the type of problems that are categorized and
reported as doomed by our algorithm. These are bugs that seem trivial but do
occur in practice. In fact, they even occur on the main branches of well tested
long standing open-source projects. In our evaluation, we will discuss in more
detail which projects we analyzed, and how the severity levels helped us to stay
focused on genuine bugs and ignore false positives.

3 Inconsistent Code

In this section, we formally define the notion of inconsistent code and present our
static analysis approach for detecting inconsistent code. In subsequent sections,
we will define the three categories of inconsistent code and then we will present



Severity Levels of Inconsistent Code 5

Program ::= Block∗

Block ::= label : Stmt;∗ goto label∗;

Stmt ::= VarId := Expr; | assertExpr; | assumeExpr;

Fig. 3. The syntax of our simple (unstructured) Language

an inconsistent code detection procedure that also outputs the category with
each instance of inconsistent code.

We present our approach using the simple unstructured language shown in
Figure 3. The language is a simplified version of Boogie [4] and is sufficient for
demonstration purposes. Even though it is simple, it is expressive enough to
encode a large class of programs in high-level languages such as Java [1].

A program in this language is a set of Blocks, with one unique entry block,
be, where execution of the program starts, and a unique sink block, bx, where
execution terminates. Each block is connected to possibly multiple other blocks
using (non-deterministic) gotos. A block is a piece of sequential code contain-
ing assignments, assertions, and assumptions. Assertions have no effect if the
asserted condition evaluates to true and abort the execution with an error, oth-
erwise. Assume statements behave similar to assertions except that execution
blocks if the assumed condition evaluates to false. Assume statements are used
to reduce non-determinism introduced by gotos and model common control-flow
constructs such as conditional choices or loops. Assignments update the value
of program variables. We do not explicitly present the syntax for expressions.
We do allow the assignment of non-deterministic values to variables (e.g., for
abstraction).

A (complete) path in a program is a sequence of blocks beb1 . . . bx such that
each block in the sequence is connected (via goto) to the next block in the
sequence. Throughout this paper, the term path always refers to a complete
path, starting in be and ending in bx. For our purposes here, the semantics of
a path in a program is just a Boolean value indicating if the path is feasible;
that is, if the sequence of assignment statements on this path can be executed
without violating any assumption or assertion. Formally, we define the semantics
of a path, feasibility of a path, and inconsistent code as follows.

Definition 1. The function [·] mapping a sequence of statements s1; · · · ; sm to
a first-order formula is defined recursively as follows:

[s1; s2] = [s1] ∧ [s2] [v := e] = v = e [assume e] = e [assert e] = e

The semantics [beb1 . . . bx] of a path beb1 . . . bx is the formula [sbe ; sb1 ; . . . ; sbx ],
where sbe ; sb1 ; . . . ; sbx is a static single assignment form for the straight-line
program Stmtbe ;Stmtb1 ; . . . ;Stmtbx obtained using the statements Stmtbi in the
definition of block bi.

A path π is feasible if the formula [π] is satisfiable.
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A block (and each statement in that block) is inconsistent in a program, if
there is no feasible path inside the program containing this block.

Feasibility of a path π can be checked using SMT solvers to check satisfiability
of [π]; see also [13].

Finding Inconsistent Code

Since the number of paths in the program can be unbounded (due to loops), most
existing algorithms for detecting inconsistent code perform program abstraction
to remove loops from the program, and then use a satisfiability checker on the
abstract program; see for example [10,12,18]. We discuss these steps next.

Program Abstraction. The goal of the program abstraction step is to eliminate
loops and procedure calls from the program. This is usually done by replacing the
corresponding code by non-deterministic assignments to (an over-approximation
of) all variables modified in the original code surrounded by a (possibly trivial)
pair of pre- and postcondition. The property guaranteed by the abstraction step
is that it only adds executions to the program but never removes one (see [10,18]).
We use abs(P ) to denote an abstraction of program P .

Static Single Assignment. In the second step, we apply static single assign-
ment transformation [5] to abs(P ) to get a program ssa(abs(P )). The program
ssa(abs(P )) is a loop-free program in which each variable is only written once.
We refer to such a program as passive program.

Inconsistent Code Detection. Finally, the passive program ssa(abs(P )) is en-
coded into a first-order logic formula [ssa(abs(P ))] such that each model of this
formula maps to some feasible paths in the passive program. Formally, given a
passive program in our language from Figure 3, its encoding into first-order logic
is done as follows:

Statement First-order representation
[Program ::= Block0Block1 . . .Blockn]

∧
0≤i≤n([Blocki])

[Block ::= label : Stmt;∗ goto label1 . . . labeln;] label = ([Stmt;∗ ] ∧
∨

0≤i≤n labeli)

[Stmt0; . . .Stmtn; ]
∧

0≤i≤n([Stmti])

[assume e], [assert e], [v := e] As in Definition 1

The most important step is the translation of Block. Each block comes with a
label which becomes a Boolean variable in the first-order representation. This
variable is true (in any model) if and only if there exists a feasible suffix from
that block to a terminal block of the program. Since the program is already
in single assignment form, each program variable can be translated into a vari-
able in the first-order formula of appropriate (SMT) type. Going from program
types to SMT types may require inserting additional assertions (or be a source
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Fig. 4. Categories of inconsistent code.

of unsoundness); for example, when fixed size integers are encoded as natural
numbers. We do not discuss this last point in this paper.

Given program P , the procedure for detecting inconsistent code in P first
computes the formula φ := [ssa(abs(P ))], and then it checks satisfiability of
φ ∧ labele, where labele is the label for the initial block blocke. If the formula is
satisfiable and M is a model, then we can extract at least one complete path with
labels, say labele, label1, . . . , labeln, labelx, where each label in the path is mapped
to True in the model M . Each block in this path is marked “consistent”. We
iterate this process after adding an additional constraint to φ that eliminates
M from the set of models of the new formula. The new constraint could either
be a blocking clause that excludes this path (i.e., ¬

∧
labeli), or it could just set

the label of one of the unmarked blocks to True. Iterating this process excludes
at least one feasible path in each iteration. Since the number of feasible paths
in a passive program is finite (because we removed loops and procedure calls),
eventually the new formula becomes unsatisfiable and the process terminates.
At termination, all unmarked blocks are output as “inconsistent code”. Since
the abstraction of loops and procedure calls only adds executions, we have the
guarantee that all inconsistent code found by the above procedure on abs(P ) is
also inconsistent in the original program P .

The above procedure describes the basic steps necessary to build a tool that
detects inconsistent code as described in [2,16,18]. In the following, we show how
this basic inconsistent code detection can be extended to distinguish different
categories of inconsistency.

Note that, for inconsistent code detection, assumptions and assertions are
treated in the same way because, for the proof of inconsistency, it is not relevant
why paths through a block are not feasible.

4 Severity Levels of Inconsistency

The key contribution of this paper is the introduction of the concept of severity
levels for inconsistent code. This categorization is intended to reflect the confi-
dence of the static analysis tool in its claim about the presence of a bug in the
software and its severity.
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We categorize inconsistent code in two dimensions. First, we distinguish be-
tween inconsistent code that is possibly reachable versus inconsistent code that
is provably unreachable. Second, we also distinguish inconsistent code based on
whether executions along paths containing that code results in assertion viola-
tion. Figure 4 shows the categories resulting from the distinction along these two
dimensions: doomed, for inconsistent code that is possibly reachable and leads
to an assertion violation error; demood, for inconsistent code that is provably
unreachable because it must be preceded by an exception; and unr, for code
that is provably unreachable, but executions along paths containing it do not
cause assertion violations (that is, they all block due to assume violations).

Definition 2 (Severity Levels). Given a program P , let P ′ denote the pro-
gram obtained from P by removing all assert statements.

An inconsistent block in a program is unr if for every complete path π in P ′

containing this block, the formula [π] is unsatisfiable.
An inconsistent block in a program is doomed if for some complete path π in

P ′ containing this block, the formula [π] is satisfiable and for some path π in P
from an initial block to this block, the formula [π] is satisfiable.

An inconsistent block in a program is demood if for some complete path π in
P ′ containing this block, the formula [π] is satisfiable and for every path π in P
from an initial block to this block, the formula [π] is unsatisfiable.

Intuitively, if all paths through some block cause an assertion violation, then
that block is either doomed or demood. It is doomed if that block is reachable, and
it is demood if it that block is not reachable. All other instances of inconsistent
code are categorized as unr.

We remark here that assert statements in our program can arise either from
explicit assert statements in the source, or from implicit assert statements that
arise, for example, when dereferencing a pointer or dividing by a number.

Since our inconsistent code detection and categorization procedure will neces-
sarily run on an abstraction of some concrete program, we relate a categorization
on an abstraction to a categorization on the concrete in Lemma 3. For our pur-
poses, abstractions can just add behaviors: formally, program Q is an abstraction
of P , if Q and P share the same blocks, and for every path π in P , there is a
corresponding path σ in Q (containing the same blocks) such that [π] ⇒ [σ] is
valid in both cases – when we retain the assert blocks in P and Q and also in
the case when we remove the assert blocks from P and Q.

Lemma 3. Let Q be an abstraction of P . Then, if a block is unr in Q, then it
is unr in P . If a block is demood in Q, then it is either demood or unr in P . If
a block is doomed in Q, then it is either doomed or demood or unr in P .

Proof. Suppose a block b is unr in Q. Consider any complete path π through
that block in P . We know there is a corresponding path σ in Q such that [π]⇒
[σ]. Since block b is unr in Q, the formula [σ] (with all asserts removed) is
unsatisfiable; and hence [π] (with all asserts removed) is also unsatisfiable.
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Statement First-order representation

[assume e] e
[assert e] e∨ ignore

[v := e] v = e

Fig. 5. To detect which code is inconsistent because

Next, suppose block b is demood in Q. Consider any partial path π in P
from an initial block to block b. Since b is demood in Q, for the corresponding
partial path σ in Q, [σ] is unsatisfiable. Since [π] ⇒ [σ], this implies that [π] is
unsatisfiable. This shows that b can not be doomed. Hence, b is either demood or
unr. ut

Since abstractions add behaviors and inconsistent code is about the absence
of feasible behaviors, it is clear (also from Lemma 3) that if we use sound abstrac-
tions to compute inconsistent code, we will never get a “false positive” instance
of inconsistent code. In reality, however, a static analyzer in general and our tool
in particular, has to use all kinds of abstractions – both over (sound) and under
(unsound) – to enable scalable analysis [15]. Under-approximations can cause
false positives. An even more interesting feature of inconsistent code is that false
positives for inconsistent code can also arise from perfect semantic-preserving
transformations (i.e. no abstractions) because introducing inconsistent code does
not change semantics of programs. Preprocessors and transformers used in com-
pilers and analysis tools can often introduce inconsistent code, which is irrelevant
for the developer. Our categorization is significant also because all such false-
positive inconsistencies get categorized as unr in our approach. Pragmatically,
irrespective of whether an inconsistency is a true one or a false positive, it will
be counted as a false positive in practise if it is not fixed by a developer, and
this aspect will guide our evaluation in Section 6.

In the following, we discuss how the inconsistent code detection algorithm
outlined in Section 3 can be extended to distinguish the three severity levels.

5 Algorithm for Categorizing Inconsistent Code

We refine the inconsistent code detection algorithm from Section 3 to also report
the categories doomed, demood, and unr, of inconsistent code.

Recall that to appropriately categorize inconsistent code, we need to be able
to 1) detect if a statement is inconsistent because the executions containing it
lead to an error, and 2) check if a statement is forward reachable.

The first check can be easily integrated in the existing algorithm. After the
algorithm has covered all feasible paths, we simply remove all assertions from the
program and check if there are statements that can be covered now but couldn’t
be covered before. These are the statements that are inconsistent because of
assertion errors (i.e., doomed or demood). Everything that still cannot be covered
after removing the assertions falls into the category unr. To implement this step
efficiently, we modify the way we encode programs into first-order logic as shown
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in Figure 5. The only change is that we translate assertions of the form assert(e)
into e∨ ignore instead of just e. Here, ignore is an uninitialized Boolean variable
that we introduce. That is, if ignore is true, the whole expression becomes true
and thus the assertion e is ignored.

Our refined algorithm works as follows: first, we compute the first-order for-
mula φnew using the new encoding with the alternative treatment of assertions.
Then, in Phase 1, we run the algorithm from Section 3, but in place of the
old φ, we use φnew and, before we start searching for models, we push the ax-
iom ignore = false on the theorem prover stack (for our implementation we
use Princess [17], but other SMT solvers can be used equally well). That is,
in Phase 1, we do inconsistent code detection exactly as before. Once we have
marked all feasible blocks, we pop ignore = false from the prover stack (thus
allowing the solver to pick ignore = true which removes all asserts), and con-
tinue our search for (more) feasible paths in Phase 2. Every block that is marked
in this second phase (and was left unmarked in the first phase) is inconsistent
solely due to assert violations; that is, it either falls into doomed, or demood.
Everything that is unmarked even after the second phase is categorized as unr.

With this small extension, we are already able to distinguish unr from the
other two categories. What is left is to distinguish doomed from demood. To
that end, we need to check if the inconsistent code is reachable. This step can
be implemented by a single theorem prover query (e.g., [12]) by encoding the
subprogram containing all traces from the program’s source to this statement
using the simple encoding from Section 3, and checking the satisfiability of the
resulting formula. If the formula is SAT, then the statement is reachable, and the
inconsistent code is categorized as doomed. If it is unsatisfiable, the statement is
unreachable and it is categorized as demood.

Theorem 4. The procedure outlined above correctly categorizes code as doomed,
demood, or unr.

We recall that, in practice, the categorization is performed on some abstraction,
and even though Lemma 3 informs us that our categorization as doomed and
demood (computed on the abstract) may not hold for the concrete, we still report
the severity level computed on the abstract as the severity level for the concrete.
Now, we have to show experimentally that these categories are useful and that
our intuition is correct that doomed is the most important, followed by demood,
and that unr can mostly be ignored.

6 Evaluation

We show experimentally that the three severity levels introduced above can
be effectively used to differentiate inconsistencies that are deemed relevant by
developers from the ones that are considered irrelevant. Specifically, we answer
the following research questions:

1. Does our categorization improve usability of inconsistent code detection?
Are reports in the doomed category rare and highly relevant to developers?
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Benchmark Inconsistencies doomed demood unr Total time Overhead

Apache Cassandra 127 0 0 127 415.142s 5.636s
Apache Flume 12 5(1) 0 7 1475.955s 31.412s
Apache Hive 534 11 7 516 12623.264s 179.478s
Apache jMeter 9 0 0 9 1389.117s 29.394s
Apache Maven 15 1 0 14 777.079s 10.78s
Apache Tomcat 62 7(2) 0 56 5141.671s 170.065
Bouncy Castle 23 2 0 21 2067.994s 22.358s
WildFly (JBoss) 31 7 0 24 3130.415s 41.268s

Table 1. Results of applying our approach on several open-source programs. The
table shows per benchmark the number of detected inconsistencies, the categories they
fall into, the time for analyzing the benchmark, and the overhead introduced by our
approach. For Flume and Tomcat, which use custom run-time assertions libraries, we
needed to specify their assertion procedure to avoid false alarms.

Are reports in demood rare and interesting (but less relevant than the pre-
vious category)? Does the bulk of reports fall into the unr category, and are
the reports non-critical so that we can hide them from the user unless she
deliberately asks to see them?

2. Can we categorize inconsistent code at a reasonable cost?

Experimental Setup. We implemented the proposed extensions from Section 5
on top of our Bixie tool [16]. Bixie is based on Soot [19] and performs intra-
procedural inconsistent code detection on Java bytecode. The tool and all scripts
necessary to repeat the presented results are available on the tool website.

We evaluate our extensions to Bixie on a set of popular open-source Java
projects with a total of over a million lines of code. We picked the projects
without having a particular pattern in mind. Mostly, we picked projects be-
cause we could build them easily. The projects include popular projects from
the Apache foundation, such as Cassandra, Flume, Hive, jMeter, Maven, and
Tomcat. We also applied our analysis to the crypto library Bouncy Castle and
the application-server WildFly (formally known as jBoss).

The upside of picking real open-source projects is that we will find real bugs
that we can report and we avoid the confirmation bias that would arise from
handcrafted examples. The downside is that popular open-source projects tend
to be of good quality and rather well-tested meaning that inconsistent code will
be rare. However, as we will see, it still exists.

For each project, Bixie scans one procedure at a time for inconsistent code
with a timeout of 40 seconds. If Bixie is not conclusive within the given time
limit, it reports nothing for that procedure. We analyze all projects on a standard
desktop PC. Table 1 summarizes our results, showing the number of inconsistent
code snippets detected in total, and by category, as well as the total computa-
tion time per benchmark and the extra time spent by our extensions to put
inconsistent code into the different categories.

Discussion. With our experimental results, we try to answer our first research
question, whether the proposed categories make sense and help to identify rele-
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Benchmark doomed demood unr Total fixed

Apache Cassandra 0 0 1 1 1
Apache Flume 1 0 0 1 1
Apache Hive 3 1 0 4 11
Apache jMeter 0 0 2 2 2
Apache Maven 1 0 0 1 1
Apache Tomcat 1 0 0 1 1
Bouncy Castle 1 0 4 5 5
WildFly (JBoss) 6 0 0 6 6

Table 2. Number of inconsistencies from Table 1 for which we proposed a patch per
category and in total, and number of inconsistencies that have been fixed by the time
of writing this paper.

vant inconsistent code quickly. Looking at the distribution of inconsistent code
over the different categories in Table 1, we can see that, as expected, a large
part of the detected code falls into the unr category. A welcomed side effect is
that all false positive that arise from our unsound abstraction of multi-threading
or reflection fall into this category. That is, none of the doomed inconsistencies
qualify as false positive. To our surprise, demood inconsistencies are very rare.
We assume that this can be largely attributed to the fact that the most common
Java IDEs, Eclipse and IntelliJ, use constant propagation to warn the user about
a subset of demood inconsistent code (but Eclipse, for example, often does not
warn about doomed inconsistent code).

Table 2 shows for how many inconsistencies of each category we have pro-
posed a patch, and how many of those got accepted by developers. Further down,
we will discuss these findings for each benchmark individually. Out of the total
24 doomed inconsistencies (after removing the inconsistencies related to Guava
calls as described in the caption of the table), we provided patches for 13, and by
the time of writing this paper, 22 have been fixed (in the 9 cases where we did
not provide patches, the developers fixed the bugs by themselves). That is, 91%
of doomed inconsistent code has been fixed. We only reported 1 out of 7 demood

inconsistencies (all of which have been found in Hive). We did not report the re-
maining 6 because the developers did not respond to our earlier pull requests for
this project and we did not want to spam their Git. Three of the remaining six
demood inconsistencies were unnecessary null-checks. The other three occurred
in three instances of the same cloned code and resulted from a bug in Bixie which
we were not able to fix by the time of submission. In total, we found 774 unr

inconsistencies out of which we reported 7 that we found worth patching. The
remaining inconsistencies were either deliberately unreachable code, unreachable
code that occurred in bytecode but not in source code (see [1]), or false positives
from unsound translation of multi-threading, reflection, or other programming
bugs. Out of the 7 reported unr inconsistency, only one had an effect on the
program behavior which we discuss below (in the findings for Cassandra), the
others were mostly cosmetic.

In the following we discuss, benchmark by benchmark, what we found, what
we patched and the developer feedback that we got.
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For Cassandra, we reported one inconsistent statement from unr. The code
computed a random Boolean by computing rnd%1==0. Since modulo 1 is con-
stant, the Boolean expression is constant, which caused unreachable code. None
of the other 127 statements in unr was worth reporting.

For Flume, we reported one of five inconsistent statements from doomed where
a variable of reference type was checked for nullness and later, one of it’s fields
was accessed. The four remaining inconsistent statements from doomed were
found because Flume uses the Guava library for run-time assertions. Without
inter-procedural analysis, our analysis does not see that Guava throws an ex-
ception if an assertion fails. Thus the analysis assumes that, if the assertion
fails, the code behind it is still reachable (and, in these cases, inconsistent). For
code that uses custom assertion libraries, our analysis will produce these ’false
alarms’, unless we provide contracts (which can be done manually), or perform
inter-procedural analysis.

For Hive, we reported several bugs but since there was no feedback from the
developers so we decided not to submit patches for the remaining bugs. However,
by the time of writing this paper, all doomed inconsistent code had been removed
by the developers (without acknowledging our pull requests). We assume that
the developers only mirror their git to GitHub and hence could not integrated
our pull requests. The large number of unr inconsistent code in Hive is rooted
in generated code that contains a lot of deliberately unreachable code.

For jMeter, we reported two occurrences of unr. Both were duplicated cases
in case splits. While these cases were not changing the behavior of the code they
were obvious mistakes that had a straight forward patch, so we decided to report
them anyway.

For Maven, we reported the one bug found by our tool which is shown in the
second listing of Figure 2. Our patch got accepted.

For Bouncy Castle, we report 5 occurrences of inconsistent code and all fixes
got accepted. We only report one of the two doomed inconsistencies. We did
not report second inconsistency which was a pointer de-reference that inevitably
failed if the loop, which iterated over a list, was not entered. However, we (and
our algorithm) could not immediately decide if this list may be empty. While
adding an additional check may help to harden the code we decided not to write
a patch. For the other doomed inconsistency, which was a possible array out-of-
bounds read after loop, we submitted a patch. We further submitted patches for
four unr inconsistencies which were obviously unreachable because of duplica-
tion. None of these were actual bugs but since they were easy to fix, we decided
to patch them anyway.

For Tomcat, we reported one out of seven instances of doomed inconsistent
code. Similar to Flume, five of the seven entries in doomed are inconsistent be-
cause Tomcat uses its own run-time assertion library. Once we provide a speci-
fication for these procedures, these five reports disappear. One reported doomed

inconsistent code was rooted in an implicit else-case that would lead to an in-
evitable run-time exception. However, since we believe this case cannot occur,
we decided not to propose a patch.
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For WildFly, we submitted patches for 6 out of 7 occurrences of doomed. All
got accepted (but have not been merged at the time of writing the paper). We
did not report one occurrence, which was an implicit else-block in a switch
whose execution must cause an exception. However, it looked like the developers
decided to use an else if-block instead of the else to make the code more
readable so we decided not to propose a patch.

To summarize, we can answer our first research question with yes. Our cat-
egories significantly improve the usability of our inconsistent code detection
tool: distinguishing doomed inconsistencies from which over 90% are relevant
and worth fixing, from unr inconsistencies where less than 1% was fixed and
which may contain false positives, dramatically improves the user experience of
the tool. To our surprise, demood inconsistencies did not play a role at all. As
discussed above, we believe that modern IDE support is sufficient to detect and
eliminate demood inconsistencies before they find their way into the repository.
To answer our second research question, we look at the computational overhead
in last column of Table 1 to see if our extensions are prohibitively expensive.
This is not the case. For our benchmarks the time overhead for putting incon-
sistent code into categories is in the single digit percentage. Even for projects
like Cassandra and Hive where many inconsistencies are found the overhead is
small. This is because a large percentage of the detected inconsistent code falls
into the unr category for the (potentially expensive) reachability check in our
algorithm does not need to be performed. Hence, we can give a positive answer
to our second research question: categorizing inconsistent code can be done at
a reasonable computational overhead. In particular, given the number of non-
interesting reports it can suppress, the overhead time clearly pays off for the
user.

Threats to validity. We identify the following three threats to validity in our
experimental setup. First, we only picked the master-branches of each project.
Most of these projects use some form of continuous integration (CI), so the
master-branch is usually well tested. This may distort how inconsistencies are
distributed across the categories during development. The CI system may have
commit hooks that reject contributions according to various rules. WildFly, for
example, enforces coding conventions for each commit, which potentially affects
the number of demood inconsistencies. However, in general, we assume that,
without CI, we would just find more relevant inconsistencies and our finding
that the proposed categorization improves usability still holds.

Second, the selection of benchmark projects may be biased because we se-
lected only projects which we could compile (and hence analyze) easily. However,
since all projects are major open-source projects, we believe that it is still pos-
sible to generalize from the results.

Finally, the selection of tools, theorem prover, etc. can be seen as a threat to
validity. However, since there is no competing tool to detect inconsistent code
we can only assume that our implementation is not biased towards or against
the finding in this paper. For transparency, we make the code and experimental
setup available online [16].
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7 Related Work

Algorithm that detect, among other things, inconsistent code have been pub-
lished in several previous papers (e.g., [2, 6, 18]). The term inconsistent code
is used by [2, 10, 18], in other papers, the same phenomenon is called doomed
program points [10], or deviant behavior [7].

A similar technique to detect unreachable code in the programs with annota-
tions has been presented in [12]. Like our approach, their technique is based on
deductive verification, but only detects a subset of demood and unr, but would
not detect doomed inconsistent code.

Our approach of using Boolean flags to disable assertions is inspired by the
work of [14] which uses a similar encoding to obtain error traces and the asser-
tions that cause them to fail from SMT solver counterexamples.

Other papers have discussed the value of post-processing reports from static
analysis tools. In [8], warnings produced by Coverity Static Analysis and Find-
Bugs are clustered by similarity. The authors show that the grouping significantly
reduces the reports that have to be considered. In [9], a set of benchmarks is
proposed to evaluate categorization of static analysis reports. Unfortunately,
these benchmarks target light-weight analysis and are not comparable to our
approach. FindBugs uses a set of detectors that detect a particular category of
potential bugs. In a case study in [3] the authors discuss the value of categorizing
warnings and its impact in an industrial cases study. While all these papers share
our motivation that categorizing static analysis warnings increases usability of
tools, their work is based on light-weight analysis tools that notoriously produce
many false alarms. We operate on inconsistent code (which is not detected as
such by their tools).

8 Conclusion

We have presented an efficient way to categorize inconsistencies in source code.
With a small extension to existing inconsistent code detection algorithms, we
are able to distinguish three categories doomed, demood, and unr of inconsistent
code. Our experiments show that the doomed category contains only few, but
highly relevant warnings, while the unr category contains hardly any critical
warning but collects all false alarms. Hence, the proposed approach dramatically
increases the usability of inconsistent code detection.

Our experiments indicate that demood inconsistent code is rare which would
suggest that making a distinction between demood and doomed inconsistent code
is not necessary as this step is relatively costly. However, this observation may
be biased by using only master-branches and further experiments on code in
active development will be necessary.

For our future work, we have identified that custom assertion libraries like
Guava can still introduce false alarms which can easily be avoided by adding
very simple contracts. These contracts could be generated automatically, or we
could extend our tool to inline procedures up to a certain size.



16 Martin Schäf and Ashish Tiwari

If nothing else, we have fixed several bugs in open-source projects that run
on many web servers that we talk to every day, and thus, we can claim that we
have made the world a bit safer.
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