Reconstructing Paths for Reachable Code

Stephan Arlt, Zhiming Liu, and Martin Schaf

United Nations University, IIST,
Macau S.A.R., China.
{arlt,lzm,schaef}@iist.unu.edu

Abstract. Infeasible code has proved to be an interesting target for
static analysis. It allows modular and scalable analysis, and at the same
time, can be implemented with a close-to-zero rate of false warnings.
The challenge for an infeasible code detection algorithm is to find ex-
ecutions that cover all statements with feasible executions as fast as
possible. The remaining statements are infeasible code. In this paper we
propose a new encoding of programs into first-order logic formulas that
allows us to query the non-existence of feasible executions of a program,
and, to reconstruct a feasible path from counterexamples produced for
this query. We use these paths to develop a path-cover algorithm based
on blocking clauses. We evaluate our approach using several real-world
applications and show that our new prover-friendly encoding yields a
significant speed-up over existing approaches.

1 Introduction

Recently, static verification techniques are being used to prove the existence of
infeasible code [?,7,7,?]. These techniques prove the existence of statements that
do not occur on any feasible (complete) control-flow path in a program. Such
statements could be unreachable code, a null-check of memory that has already
been accessed, or a guaranteed violation of a run-time assertion. Infeasible code
is an interesting target for static verification: proving the absence of feasible
executions can be done on a code snippet in isolation without knowing its con-
text, and the proof still holds if the context is extended, which allows scalable
implementations at a close-to-zero false positives rate.

To detect infeasible code, one has to prove that any complete path contain-
ing a particular statement is infeasible. This is usually done by computing a
first-order logic formula of (an over-approximation of) the weakest-liberal pre-
condition of the set of paths containing this statement with respect to the empty
post-state. Then a theorem prover is used to check if this formula is valid. If the
proof succeeds, then there is no terminating execution along any of these paths.

To check if there is any infeasible code in a program, we have to repeat this
check for every statement. Of course, this is very inefficient. Several optimiza-
tions are possible. E.g., the existence of a feasible complete control-flow path
containing a particular statement immediately implies that all other statements

on this path have a feasible execution as well. However, such optimizations re-
quire that counterexamples from the theorem prover can be mapped to feasible
executions.

The problem we are addressing in this paper is the following: If we query the
theorem prover with the weakest-liberal precondition formula of a code snippet,
the counterexample we receive only states the existence of at least one feasible
path through this snippet, it, in general, does not allow us to reconstruct any
particular path. This is, because the query we sent to the theorem prover allows
the prover to find a satisfying valuation that represents several program exe-
cutions, but, as the program we encoded into the formula is deterministic, we
cannot match this valuation to one execution in the input program. Hence, the
formula has to be augmented to force the prover to find a valuation that can be
mapped to exactly one deterministic execution.

In this paper, we propose a new encoding of code into logic formulas for
infeasible code detection that allows us to identify a feasible path (actually, a
path that we cannot prove infeasible) immediately from a counterexample of the
theorem prover. Based on this encoding, we propose an algorithm to detect all
statements for which the prover cannot find a feasible execution. We show how
the new encoding can be used to develop much faster tools for infeasible code
detection.

Related Work. The problem of reconstructing information about error traces
from counterexamples in static verification was first discussed by Leino et al. [?].
They introduce so-called labels which are emitted by the theorem prover if a
proof of correctness fails. These labels refer to particular assertions that could not
be proved correct, and allow the reconstruction of an error trace. The motivation
of this approach is essentially the same as ours, but their technique cannot be
applied to infeasible code detection, as it only works for weakest precondition
encodings with failing assertions. In the case of weakest liberal precondition, no
label would be emitted by the prover.

There is a lot of related work on infeasible code detection. Under different
names, infeasible code detection has been proposed in many papers. Probably
the most significant work is the paper by Engler [?] which also forms the basis
of the static analysis in Coverity’s Prevent tool. In this work, infeasible code
is called contradicting believes and detected using syntactic pattern matching.
Findbugs [?] uses a similar pattern matching to identify a subset of infeasi-
ble code. In [?], infeasible code is called (sequential) semantic inconsistency or
source-sink errors. They further detect non-sequential semantic inconsistencies
which are not infeasible code. None of these approaches uses static verification
based encodings of programs, so the problem and solution described in this paper
do not apply there.

Different approaches have been presented that use weakest-liberal precondi-
tion encodings of programs for infeasible code detection. Janota et al. [?] present
an approach to detect unreachable code in the presence of logic specifications.
They only focus on the subset of infeasible code that is not forward reachable.
To reduce the number of queries, they make use of the dominator relationship

between statements in the control-flow graph to identify a minimal subset of
statements that have to be checked. In [?] and [?], an approach to detect infea-
sible code is presented that uses auxiliary Boolean variables and the dominator
and post-dominator relation on control-flow locations to minimize the number
of theorem prover queries. In [?] and [?] the term infeasible code is introduced.
There, we used auxiliary integer variables and an effectual set to define a query
optimal algorithm to detect infeasible code. Another approach for infeasible code
detection is presented in [?], which refers to it as fatal code.

All of the above approaches that detect infeasible code using static verifi-
cation see the problem of finding infeasible code as a coverage problem of the
control-flow graph. They try to find an optimal coverage strategy to find all
feasible paths and use a theorem prover as an oracle for feasibility queries. They
propose different strategies based on helper variables to send more informed
queries to the prover and thus reduce the overall number of queries. In this pa-
per, however, we believe that a theorem prover is too complex to be treated as
a blackbox: we assume that helper variables that constraint the theorem prover
may refrain the prover from building useful knowledge and thus make each query
more expensive.

2 Examples

Infeasible code is an interesting target for static analysis. First of all, it can
be detected without too much noise (i.e., false positives), and second, infeasible
code is usually a good indicator for security vulnerabilities as it shows the exis-
tence of code that cannot be executed or fails inevitably. And, most importantly,
infeasible code occurs in practice, and it is not rare, as shown in our experiments
in Section 6. We motivate the usefulness of infeasible code detection using two
instances of infeasible code in Fig. 1 that we found in the software used for the
German eID!. Both examples are not necessarily bugs, but they show problems
in the error model of the applications. In the first example, the equals pro-
cedure compares the .bases field of two objects, by first checking if the one
on the left hand side is null and the other one is not. If so, it returns false
otherwise it compares the size of the bases. Now, consider the case that bases
and other.bases are null. In that case, the else-branch of the if statement
in line 4 is executed. And, on any execution, where this else-branch is executed
we cause a NullPointer exception in line 8. Hence, the else-branch of the con-
ditional in line 4 is infeasible code (and a bug if we can find a test case that
executes this code).

The second example is even more obvious: if i is bigger than (len-1), the
procedure throws an exception at line 3. Hence, the return statement in line 7
can never be reached and thus is infeasible code. Even though, no error occurs, it
makes a significant difference if a method returns normal or with an exception,
thus we assume a conceptual flaw in the error model that we have yet to confirm
with the developers.

! nttp://www.openecard.org/

1 |// org.openecard.bouncycastle.crypto.params.
NTRUSigningPrivateKeyParameters

2 |public boolean equals(Object obj) {

3 if (bases == null) {

4 if (other.bases != null) {

5 return false;

6 }

7 }

8 if (bases.size() != other.bases.size()) {
9 return false;

10 }

11 |}

1 |// org.openecard.bouncycastle.pqc.math.linearalgebra.

GF2Polynomial
2 |public void xorBit(int i) throws RuntimeException {
3 if (4 <0 || i > (len - 1)) {
4 throw new RuntimeException ();
5 }
6 if (i > (len - 1)) {
7 return;
8 }
9 value[i >>> 5] ~= bitMask[i & Ox1f];
10 |}

Fig. 1: Two examples of infeasible code taken from the German elD software.

In both cases, the infeasible code is not a bug, but it shows problems in the
error model, as there is some error handling code, but still there are cases which
are not handled or handled multiple times. Other examples can be found using
our tool, Joogie [?]. Usually, infeasible code in large methods tends to be more
interesting but is not suitable to be presented in a paper.

3 Preliminaries

Throughout this paper, we only consider programs written in the simple un-
structured language given shown in Figure 2. The language can be seen as a
simplified version of Boogie [?] which is sufficient for demonstration purposes.
The language is simple but yet expressive enough to encode high-level languages
such as Java. In our experiments in Section 6, we use the Joogie tool [?] to
translate Java programs into this language.

We represent executions of statements in our language by pairs of states.
A state s is a function that maps program variables to values of appropriate
sort. We use s(z) to denote the value of a variable z at the state s. We use
the weakest precondition to describe the semantics of the statements in our

Program ::=Block*
Block ::= label : Stmt;" goto label";
Stmt ::= Varld := Expr; | assert Ezpr; |

assume Ezpr;

Fig. 2: The syntax of our simple (unstructured) Language

language. Given a statement &, and two states s,s’, we say that s followed by
s’ is an execution of & if and only if s = wp(4,s’). Furthermore, we use the
weakest-liberal precondition to check if a statement has no execution at all: a
statement has no execution if the formula = wip(&, false) is valid (for brevity,
we use the empty set of states and the Boolean false interchangeably, which is
not really clean but safes a lot of writing). That is, a statement has no execution
if, for any pre-state s it’s execution ends in false (which is not possible), or does
not terminate (see definition of wip).

A path is a sequence of statements m = do;...; &,_1; connected by sequential
composition, an execution of 7 is a sequence of states sg ... s, such that for any
0 <i<mn, s = wp(di,si+1), and in particular so = wp(mw, s,). Hence, a path
7 has no execution, if wip(w, false) is valid. For brevity, we treat statements
connected by sequential composition as sequences of statements and omit the
semicolon if possible. We say a path is feasible if it has at least one execution
and that it is infeasible otherwise.

st | wip(,Q) | wp(s,Q)
assume F EF = Q E = Q
assert F/ EFE = Q@ EANQ

Varld := Expr| Q[Ezpr/Varld) Q[Ezpr/ Varld
ST wip(S, wip(T, Q)) | wp(S, wp(T, Q))
goto So ... Sn | No<icn, WIP(Si; Q)| No<ic,, wlp(Si, Q)

Fig. 3: The weakest (liberal) precondition semantic of our language from Figure 2.

We extend the computation of wp and wlp from paths to programs in the
obvious way. We use the standard approach to compute a formula representa-
tion of the weakest-liberal precondition shown in Figure 3. For a more detailed
description of this encoding which includes language features such as procedure,
we refer to [?,7].

To show that a statement & has no execution within a program P, we simply
have to show that each complete path 7 in P that contains & has no execution.
Here, a complete path is a path of P that starts in a unique initial statement

and ends in a unique final statement. Throughout the rest of the paper the term
path always refers to a complete path unless stated different.

Definition 1. Given a statement & in a program P. The statement & is in-
feasible in P if, for any complete path w in P that contains &, the formula
wip(w, false) is valid.

Here, a program could be a real program, a procedure, or simply a set of related
paths. For simplicity, we use the term program.

Computing a formula representation of the weakest-liberal precondition that
can be understood by a theorem prover usually requires some sort of abstraction.
In general, looping control-flow and the type system of high-level programming
languages cannot be encoded into a first-order logic formula that can be solved
by an automated theorem prover. Hence, abstraction is necessary. Such an ab-
straction may include elimination of looping control-flow, an approximation of
finite programming language types by infinite logic types, etc. The details of
such an abstraction are not in the scope of this paper and we refer to the related
work for more details (e.g., [?,7]).

From here on, we assume that we have an abstraction P# = abstract(P)
that, for a given program P, provides us with an abstraction P# of P that
satisfies the following properties: a) we can compute a formula representation
of wip(P¥, false) that is decidable by the decision procedure of our choice, b)
P# has only finite paths (i.e., is loop-free), and ¢) P# is a sound abstraction
of P. That is, if we can prove that P# has no execution (by showing that
wlp(P#, false) is valid), then P does not have an execution either. Formally, we
define the soundness of the abstraction as follows:

Definition 2 (Sound abstraction). Given a program P and an abstraction
P# = abstract(P). The program P¥ is a sound abstraction of P, if there exists
a mapping of paths in P# to pahts in P such that each feasible path m can be
mapped to a feasible path ©# in P7.

We emphasize that this notion of soundness is different from soundness in veri-
fication, where the abstraction has to preserve the infeasible executions instead
of the feasible ones. Implementations of such abstractions are, for example, pre-
sented in [?,7,7].

Given such an abstraction, we are able to check if a program P has a feasible
execution by asking a theorem prover if there is a valuation s such that s p~
wlp(P#, false). Now, it would be nice if we could obtain a feasible execution of
P# from s. Unfortunately, and this is the main motivation of this paper, this is
not possible. Our query checks for the non-existence of a feasible path in P#,
a counterexample to this can be an arbitrary number of feasible paths. For the
theorem prover, it may be sufficient to find values for a few program variables
to satisfy wip(P#, false). All remaining variables are then assigned to arbitrary
values. Hence, for the general case, s does not represent any particular feasible
path. However, an efficient implementation that detects infeasible code needs this
information to cover all feasible paths in P# (because all statements that cannot
be covered are infeasible in P). In the following we present a new encoding of wip

that allows us to extract exactly one execution and its corresponding control-flow
path in P# from a counterexample for wip(P#, false). Based on this encoding,
we further propose an algorithm to detect all infeasible statements in the original
program.

4 Encoding of the weakest-liberal precondition

Computing the formula representation of the weakest (liberal) precondition of
our abstract program P# is straight forward and has been discussed in many
previous articles (e.g., [?,7,7,7]). We avoid the exponential explosion of the for-
mula’s size that comes with branching, by introducing auxiliary variables, which
we call block variables. Using these variables avoids copying the wip of the suc-
cessor blocks. For each block

Block; := ¢; : S;; goto Succ;

we introduce a variable b; that represents the formula —wip(Block;, false), where
Block; is the basic block at label ¢;. These variables can be defined as

WLP: J\ b = ﬁwlp(Si, A ﬁbj)

0<i<n JjESuce;
Ab, = —wip(Sy, false).

Where B, denotes a unique exit block of the program. We can now find an
execution of our program P# starting from its initial location ¢y by asking the
theorem prover of our choice to find a satisfying valuation for

WLP A by

Note that, unlike in the previous section, we use the negated weakest-liberal
precondition. That is, we say that P# has an execution if there exists a state
s such that s = wip(P#, false). From a logic point of view, both ideas are the
same, but for the theorem prover finding a satisfying valuation is usually easier.

Lemma 1. There is a satisfying valuation s for the formula WLP with s(b;) =
true if and only if there exists an execution for the program fragment starting at
the block Block;.

Proof is given in [?]. A satisfying valuation s of WLP A by corresponds to the
existence of an execution of the program fragment. Moreover if s(b;) is true, the
same valuation also corresponds to an execution starting at the block Block;.
However, it does not mean that there is an execution that starts in the initial
state, visits the block Block;, and then terminates. This is because the formula
does not encode that Block; is reachable from the initial state.

To overcome this problem one may use the strongest postcondition to com-
pute the states for which Block; is reachable. This roughly doubles the formula.

In our case there is a simpler check for reachability. Based on the auxiliary vari-
ables that we already introduced to encode the weakest-liberal precondition, we
encode the forward reachability as follows: let Pre; be the set of predecessors
of Block;, i.e., the set of all j such that the final goto instruction of Block;
may jump to Block;. Then we can encode that a block has to be also forward
reachable on a satisfying assignment as follows:

VC: WLP Aby A\ (bi = (V bj)>.

1<i<n jEPre;

That is, like in the case of WLP, given a valuation s such that s = VC, s(bg)
is true if there exists a complete and feasible path. Further, by requiring that
s(b;) can only be true if this also holds for at least one of its predecessors, s(b;)
can only be true if it occurs on a complete and feasible path. Thus, we can
reconstruct a feasible path through our program by collecting all statements in
blocks whose block variables evaluate to true.

Theorem 1. There is a valuation s that satisfies V.C with s(by) = true if and
only if s gives rise to the execution of a complete path w. Moreover, the value of
any block variable s(b;) is true if and only if there is an execution of a path w
starting in s that visits block Block;.

Proof (Sketch). The proof trivially follows by induction: from Lemma 1, we
already know that s(bg) is true if and only if there exists a complete fea-
sible path through the program fragment. For b;, however, the implication
b = (vjePrei b;) requires that b can only be ¢rue if there exists at least one
predecessor that is also true (here, it can only be by). Further, by Lemma 1, b,
can only be true if there is a feasible execution of the program starting in b;. As
our input programs are deterministic, we also know that there can only be one
predecessor block; of a block block;, such that s(b;) = true. Hence, by induction
it follows that for a valuation s = VC, the valuation s(b;) is true if and only
if b; has a feasible prefix and suffix path and thus is on a feasible and complete
path.

The encoding of V' C' is the main contribution of this paper: similar to WLP, it
allows us to check for the non-existence of a feasible path in our program P. But,
in addition to that, a counterexample of VC also provides us a feasible path in
P# as a witness. The major benefit of our encoding over existing approaches is
that V'C does not introduce additional variables (besides the ones introduced by
WLP). In our experiments, we will show that this encoding allows significantly
faster algorithms than existing approaches.

Now, to identify infeasible code in the original program P, we have to identify
the subset of statements in P# which do not occur on feasible paths. For that, in
the following section, we show an algorithm to detect infeasible code using our
new encoding by gradually excluding feasible paths from P# until V'C becomes
unsatisfiable.

5 Covering algorithm

With the encoding from the previous section, each time we obtain a valuation
s = VC from the theorem prover of our choice, we can identify a feasible path
in P# by checking the valuation of each reachability variable b;. Now, to find
all statements that occur on feasible paths, we want to make sure that the next
time we ask our prover for a satisfying assignment of V'C' it provides us with a
s’ that executes a different path. In the following, we propose an algorithm to
achieve this by using enabling clauses, which force the prover to set at least one
b; to true, that has not been true before.

Enabling Clauses. Each time we query our prover, we want to further restrict our
formula to those valuations that represent feasible paths of previously uncovered
blocks. Therefore, we propose algorithm EnblClause in Algorithm 1 that uses
enabling clauses. An enabling clause is the disjunction of all block variables that
have not been assigned to true by previous satisfying valuation of the reachability
verification condition.

Algorithm 1: EnblClause

Input: VC': A reachability verification condition,

B ={bo,...,bn}: The set of block variables

Output: Z: The set of block variables that do not have feasible executions.
1 begin
2 I+ B
3 s < checksat(VC)
4 while s # {} do
5 ¢ + false
6
7
8
9

foreach b; in Z do
if s(b;) = true then

| T+ I\ {b:}
else
10 | ¢ oVbi
11 endif
12 endfch
13 s < checksat(VC A ¢)
14 endw
15 return 7
16 end

The algorithm takes as input a reachability verification condition V'C', and
the set of all block variables B used in this formula, and returns the set of block
variables which cannot occur on any feasible complete path. The algorithm uses
the prover checksat (lines 3,13) which takes a formula ¢ as input and returns
a valuation s | ¢ if ¢ is satisfiable or the empty set, otherwise. First, our
algorithm sets the set of infeasible block variables Z to the set of all block

variables B (line 2). Then, it checks if there exists any satisfying valuation s for
VC (line 3). If so, the algorithm removes all b; from Z which evaluate to true
in s, as those occur on a feasible path (line 8). The block variables which do
not evaluate to true in s are added to the enabling clause (line 10) to ensure
that checksat will evaluate at least one of them to true in the next iteration.
The algorithm terminates if all blocks have been visited once (and therefore, the
enabling clause ¢ becomes false), or if there is no feasible execution passing the
remaining blocks.

Theorem 2 (Correctness of EnblClause). Given a (abstract) program P with
reachability verification condition VC. Let B be the set of block variables used in
VC. Algorithm EnblClause, started with the arguments VC and B, terminates
and returns a set of block variables T for which no feasible execution ezists.

Proof. In every iteration of the loop at least one variable of the set Z will be
removed. This is because the formula ¢ will only allow valuations such that for
at least one b; € Z the valuation s(b;) is true. Since Z contains only finitely many
variables the algorithm must terminate. If 7 is a feasible path visiting the block
associated with the variable b;, then there is a valuation s that satisfies V C with
s(b;) = true. Such a valuation must eventually be found, since VC A ¢ is only
unsatisfiable if b; ¢ 7.

Hence, EnblClause is a sound and complete way to detect infeasible code for
loop-free programs given a complete implementation of the decision procedure
checksat. In practice, of course, infeasible code detection is not complete as the
computation of a loop-free program requires abstraction and decision procedures
are usually not complete.

What we have presented so far is an encoding of loop-free programs into for-
mulas that allows us to reconstruct feasible executions of this (abstract) program
from a satisfying valuation of the formula. Based on this, we have presented an
algorithm to detect all blocks in a program that do not have feasible executions
(in the original program). The question now is, if this approach allows the theo-
rem prover to discover infeasible code more efficiently than existing approaches.

Optimization. To check if there is a feasible execution for each block, it is not
necessary to include all block variables in the enabling clause. We follow the idea
of [?] and compute an effectual set of blocks which is sufficient to find at least
one feasible execution for each basic block. For that we proceed as follows: we
define a relation < on basic blocks, such that b; < b; if every complete path
that contains b; also contains b;. The relation = can be easily constructed as
a combination of dominator and post-dominator relation. As < is reflexive and
transitive, we can define an equivalence relation ~ as ~==< N <~'. We denote
by [B] the equivalence class of blocks B under ~. The elements of [B] blocks that
only appear together on a path. The partial order < is extended from blocks to
equivalence classes of blocks as expected: [B] < [B’] if and only if B < B’.
Under =, an equivalence class [B] which is minimal contains blocks that
only occur on paths containing (all) elements of [B]. Hence, finding a feasible

execution for each block is equivalent to finding one execution for one element
of each minimal equivalence class (see [?] for a proof). In the following we call a
set effectual if it contains exactly one element of each minimal equivalence class.

Hence, applying EnblClause to an effectual set of blocks gives us the set of
all infeasible blocks in the effectual set. From there, we can look up the set of
all infeasible blocks from the Hasse diagram that is given by =< (e.g., [?]).

6 Experiments

The question we are trying to answer is does the new encoding allow us to de-
tect infeasible code faster than existing approaches? For that, we compare four
different approaches: our approach from EnblClause only applied to an effec-
tual set of block variables (ExtW1p); EnblClause applied to all block variables
(EnablingClause), an approach similar to ours that uses blocking clauses in-
stead of enabling clauses presented in [?] (BlockingClause); and the algorithm
from [?] that injects integer variables into the program and uses assertions of
linear inequalities to implement a query optimal algorithm (OptimalCover).

Experimental Setup. We evaluate our approach on six open-source applications
under test (AUTSs): Open eCard, a software to support the German elD, the
CASE tool ArgoUML, the mind-mapping tool FreeMind, the time-keeping soft-
ware Rachota, the word processor TerpWord, and the software that we used
to analyze these programs, Joogie [?]. Table 1 gives an overview of our AUTsS,
including lines of code, number of analyzed procedures, and detected infeasible
statements.

Program LOC |# checked methods|# found
Open eCard |456,220 15,654 26
ArgoUML 156,294 9,981 28
FreeMind | 53,737 5,613 10
Joogie 11,401 973 0
Rachota 11,037 1,279 1
TerpWord 6,842 360 3

Table 1: Results of applying Joogie to the test applications.

For comparison, we have implemented all four algorithms in Joogie?. Joogie
provides the necessary abstraction of Java programs into loop-free programs that
can be translated into logic formulas. Loops are abstracted by redirecting the
back-edge of a loop to the loop exit and adding non-deterministic assignments
to all variables modified inside the loop to the loop entry and exit.

2 http://www. joogie.org/

Furthermore, Joogie injects run-time assertions for null de-reference, array-
bound violations, and division by zero. Joogie applies the infeasible code de-
tection to each procedure in isolation. I.e., it does not perform inter-procedural
analysis. Calls to procedures are replaced by non-deterministic assignments to
all variables that could be modified by the called function.

We use the same abstraction for each experiment, and, since all four algo-
rithms are complete for abstract programs, the detection rate is the same in each
case. Thus, we only have to compare the computation time.

All experiments are run on a workstation with 3 GHz CPU, 8 GB RAM,
and 640 GB HDD. To avoid bias by the employed theorem prover, we run our
experiments with Princess [?] (which is the standard prover in Joogie), and
Z3 [?]. Each procedure is analyzed for at most 30 seconds. If the algorithm is
not able to analyze the whole procedure within this time, we kill the prover and
start over with the next procedure. Only the time spent inside the prover is
stopped to eliminate noise that may be introduced by our implementation.

400 T T
ExtWlp ——
EnablingClause #-3-xzs
BlockingClaust
OptimalCover wm—

350

300

250

200

Time (minutes)

150

100 |-

Ll hoa]

i
Rachota TerpWord Joogie

eCard ArgoUML FreeMind

Fig. 4: Performance of the proposed encoding of the weakest liberal precondition com-
pared to other approaches that detect infeasible code.

Results. Figure 4 shows the computation time for each algorithm on our AUTSs
using the theorem prover Princess. The results show that our proposed encod-
ing together with the algorithm from the previous section yields a significant
performance improvement over existing techniques. Furthermore, it shows that
applying EnblClause only to an effectual subset of block variables results in a
relatively small but visible performance improvement.

For all experiments, EnblClause applied on an effectual set computed a to-
tal 137,997 queries in 152.33 minutes. EnblClause applied on all block variables

Program ExtWlp EnablingClause | BlockingClause | OptimalCover
73| Princess 73| Princess 73| Princess 73| Princess
Open eCard 62 335 81 437 247 866 376 1444
ArgoUML 68 215 92 308 371 697 382 941
FreeMind 33 112 45 169 216 390 244 601
Joogie 30 154 49 142 223 482 367 990
Rachota 273 702 354 875 773 1306 817 1710
TerpWord 137 370 153 435 896 1559 966 2115

Table 2: Average time (in milliseconds) per method for each program using Z3 and
Princess.

used 131,632 queries and 206.20 minutes, with blocking clauses 250, 566 queries
and 424.11 minutes, and the algorithm from [?] 132,976 queries and 646.21
minutes. Here, the time refers to the computation time inside the Princess the-
orem prover, not counting the overhead in Joogie. To our surprise, applying
EnblClause only to an effectual set rather than to all block variables results in
an increase of theorem prover queries, but reduces the computation time. We
assume that, when working on all block variables, it is easier for the theorem
prover to cover multiple blocks in one query, but this can create enabling clauses
which are very hard to solve.

Table 2 compares the average computation time per AUT for each query for the
theorem prover Princess and Z3. We can see that the performance improvements
we achieve with the new encoding are visible regardless of the prover.

Figure 5 shows how many procedures of a particular size can be analyzed
within a certain time frame using Princess or Z3 with EnblClause. Here, a
darker color indicates that more procedures, and a lighter color means less. We
can see that, for both provers, the majority of analyzed procedures up to 350
Jimple units (which is roughly the number of instructions) can be handled within
5 seconds or less. Z3 always computes an answer for procedures with less than
250 units while princess occasionally timeouts.

In conclusion, our experiments show that the new encoding results in a sig-
nificant speedup of infeasible code detection compared to existing approaches.
Infeasible code detection can be applied to real programs and even with a time
limit of a few seconds, a large portion of the procedures in our AUTSs can be
analyzed.

Threats to Validity. There are several threats to validity to be considered. First,
the AUTSs are selected more or less randomly and may be biased towards GUI-
applications. Different results may occur for other classes of applications, how-
ever, due to the size of the applications, we expect this not to happen. Another
threat to validity is that we selected stable versions of the source code from the
public repositories. Infeasible code detection should target code in production,
rather than well tested code. However, this requires a controlled setting which
is not available to us at the moment.

Z3

Timeout

<25

<20

<15

Time (s)
Frequency

<10

<5

g .

<50 <150 <250 <350 <450 <550 <650 <750 <850
Jimple Units

Princess

Timeout L

<25

<20

<15

Time (s)
Frequency

<10

<5-
<1

<50 <150 <250 <350 <450 <550 <650 <750 <850
Jimple Units

Fig. 5: Detailed comparison of the performance of configuration ExtWlp on all AUTs.
The horizontal axis depicts the number Jimple Units (which is roughly LOC), the
vertical axis depicts the analysis time of ExtWlp. The color of the individual boxes
indicate the number of analyzed procedures.

For implementation reasons, we have to measure the computation time of
Princess and Z3 at slightly different positions in the code. That is, the experi-
ments cannot be used to compare the provers with each other. They only show
that our approach yields performance improvements in both cases.

Some threat to validity arises from our restriction to Java programs. E.g.,
we cannot compare approaches that focus on C (e.g., [?,?]), which may have
a different encoding of programs into logic that affects the performance of our
algorithm. However, this is unlikely to happen, as our algorithm only uses logic
variables that are handled by the DPLL solver, whereas the memory model
usually affects the performance of the theory solver.

7 Conclusion

We have presented a new encoding of weakest-liberal preconditions for infeasible
code detection. This encoding allows us to reconstruct a feasible control-flow
path (in the abstract program) from a counterexample of an unsatisfiability
proof. With the ability to identify feasible control-flow paths, we were able to
develop a simple algorithm to detect infeasible code. The algorithm is sound
because the absence of feasible executions in the abstract program automatically
implies the absence of feasible executions in the original program.

We have shown that our simple algorithm outperforms existing implemen-
tations for infeasible code detection. We assume that this is because we put
less restriction on the theorem prover when searching for a feasible path, and,
that our helper variables are pure logic variables that do not require handling
by background theories. We believe that this encoding will allow us to develop
specialized background theories for our theorem prover that consider the graph
structure of the abstract program to avoid exploring irrelevant or redundant
control-flow paths and thus can detect infeasible code even faster.

Our experiments indicate that our tool to detect infeasible code can be ap-
plied to real-world programs, and more important, that infeasible code exists
even in well tested and stable programs. With that in mind, we are looking
into other application domains for infeasible code detection such as compiler
optimization, or worst-case execution time analysis.

Being able to obtain feasible executions (and control-flow paths) from the
prover could also help to compute under-approximated summaries (e.g., [?])
that can be used for bounded, and inter-procedural infeasible code detection.

To summarize, we have presented a new encoding of wip, and an algorithm
for infeasible code detection based on this. We were able to show on real-world
examples that this encoding detects infeasible code significantly faster than ex-
isting approaches and that, based on this encoding, several improvements to
infeasible code detection are possible. Finally, we found a lot of infeasible code
which we will report to the corresponding developers.

Acknowledgments

Our thanks go Philipp Riimmer for his suggestions on efficient encoding of pro-
grams, and the integration with Princess. Further, we would like to thank Jiirgen
Christ and Jochen Hoenicke for their valuable suggestions on the construction
of prover friendly formulas, and their detailed comments on large parts of this
paper. This work is in part supported by the grant PEARL (041,/2007/A3) and
COLAB of the Macao Science and Technology Development Fund.

