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Abstract. With the increasing availability of source code on the Internet, many
new approaches to retrieve, repair, and reuse code have emerged that rely on the
ability to efficiently compute the similarity of two pieces of code. The meaning
of similarity, however, heavily depends on the application domain. For predicting
API calls, for example, programs can be considered similar if they call a specific
set of functions in a similar way, while for automated bug fixing, it is important
that similar programs share a similar data-flow.

In this paper, we propose an algorithm to compute program similarity based on
the Weisfeiler-Leman graph kernel. Our algorithm is able to operate on differ-
ent graph-based representations of programs and thus can be applied in different
domains. We show the usefulness of our approach in two experiments using data-
flow similarity and API-call similarity.

1 Introduction

Over the past few years, we have seen a rapid increase in the amount of source code that
is openly available on the Internet. Source code hosting platforms such as GitHub, Bit-
Bucket, or SourceForge and social media resources like StackOverflow have changed
the way we program. This large amount of machine readable source code also has given
rise to several interesting new research directions, such as code prediction [23], discov-
ery of architectural patterns [20], using donor code for program repair [12, 29], and
more efficient ways to search for code [17,30].

Central to these new approaches is the ability to efficiently find similar code snip-
pets in the wild. Unlike in traditional code clone detection, the notion of similarity
depends heavily on the application. For automatic program repair, for example, it is
important that code shares a similar data-flow, whereas for code prediction, it is often
sufficient if the code interacts with a certain API in a similar way. Hence, finding a
generic approach to comparing code that can work with different representations and
abstractions has the potential to be beneficial in a variety of fields.

To address this problem, we propose a new algorithm to compute a program sim-
ilarity score based on a technique from graph isomorphism testing. Here, we use the
term program as a shorthand for any piece of code, like a full program, isolated classes
or methods, or just snippets.

* This work is funded in parts by AFRL contract No. FA8750-15-C-0010.
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Our algorithm consists of two parts. First, it turns a program into a labeled graph.
Second, it computes a Weisfeiler-Leman kernel for this graph and compares it against
the precomputed kernels of the graphs of other programs to identify the most similar
ones.

The algorithm itself is agnostic to the graph representation of the program or the
programming language and can be used with different graphs. To illustrate the use-
fulness of this approach, we introduce two graph representations of Java programs, a
simplified inter-procedural data-flow graph (IDFG), and an API-call graph (ACG), and
evaluate how these graphs can be used in combination with our algorithm to identify
similar programs. The IDFG is a simplified version of the actual data-flow graph of a
Java program and suitable to find programs that are algorithmically similar, while the
ACG is a stripped-down version of an inter-procedural control-flow graph that only
contains calls to a given API, which is suitable to find examples of API usage.

To evaluate the ability of our approach to identify similar programs, we conduct
two experiments. For the first experiment, we choose a subset of the Google CodeJam®
corpus as a benchmark. The corpus is a set of 4 algorithmic problems, each with hun-
dreds of solutions given as small Java programs (in total 1,280 programs). Our goal is
to show that, when picking any of these Java programs, our approach for finding simi-
larities using the IDFG identifies similar programs that are in fact solutions to the same
problem.

The programs in CodeJam are very algorithmic and make only limited use of API
calls (e.g., for printing). Hence, this corpus is unfortunately not suitable to evaluate our
approach in combination with the second graph representation, the ACGs. Thus, we
perform a second experiment where we use the Apache commons—1lang project as a
benchmark. We compare the similarity between all pairs of methods in this application
and evaluate manually if the reported similarities indicate similar API usage patterns.

Roadmap. 1In the following Section, we introduce the Weisfeiler-Leman algorithm to
compute graph kernels for labeled graphs. In Section 3, we explain how we use these
graph kernels to compute a similarity score between graphs. In Section 4, we introduce
the two graph representations of Java programs (IDFG and ACG) that we use in our ex-
periments. We evaluate our approach in Section 5, discuss the related work in Section 6,
and propose future directions in Section 7.

2 Preliminaries

Our approach to measure the similarity between programs is based on a standard routing
from graph isomorphism testing which we introduce in this section. More specifically,
we use the 1-dimensional Weisfeiler-Leman algorithm, often also referred to as color
refinement or naive vertex classification. The procedure is for example employed in
the currently fastest practical isomorphism solvers (such as Nauty and Traces [18],
Bliss [11] and saucy [4]).

The algorithm repeatedly recolors the vertices of its inputs graphs. Starting with an
initial coloring of the vertices which distinguishes them by their degree the algorithm

3https://code.google.com/codejam
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proceeds in rounds. In each round the new color of a vertex encodes the previous color
as well as the multiset of the colors of the neighbors. The k-dimensional variant, which
we will not require in this work, colors k-tuples of vertices and can solve isomorphism
on quite general graph classes (see [8]).

Next, we describe the one-dimensional variant more formally. If G = (V, E, xo) is
a vertex colored graph, where Y is a vertex coloring, we recursively define ;4 to be
the coloring given by

Xi+1(v) :== (xi (v), {xip1 (V") | {v, 0"} € E}).

Here we use “{” and “}}” to indicate multisets.
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Fig.1. The figure shows a left graph G and a right graph G to which the 1-
dimensional Weisfeiler-Leman is being applied for 2 iterations. Here labels are hashed
to smaller values. The renaming is as follows 4 := (1,{3}),5 := (2,{2,3}),6 :=
(2,{3,3}),7:=(3,{1,2,2}),8 := (3,{2,2,2}),9 := (4, {7}) and so on. The fig-
ure also shows the histograms of labels that appear in the two graphs highlighting their
similarity.

The process leads to an ever finer classification of the vertices. This process stabi-
lizes at some point. In the context of graph isomorphism the histogram of the colors is
used to distinguish graphs according to isomorphism.

However, for our purpose, the final colors are excessively descriptive, in the sense
that they actually encode too much information. Indeed, by a result from [1], for almost
all graph, each final color already encodes the isomorphism type of the graph.
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Circumventing this problem we adopt the technique from [27] to only execute the
algorithm for a few rounds and exploit the histograms of the colors that appear during
the execution of the algorithm. In [27] these histograms are used to design a graph
kernel which can then be applied in a machine learning fashion to perform for example
graph classification. Said kernel captures similar information to other kernels that count
subgraphs (see for example [9] or [28]). However, the Weisfeiler-Leman Kernel can be
far more efficiently computed.

It is well known that the exact information captured by ¢ iterations of naive vertex
classification can be precisely expressed in a certain type of logic (see [19]). However,
it is difficult to grasp what the result means in terms of graph theoretic properties of
the input graphs. While in a regular graph no information is generated at all, since
all vertices have the same color in all iterations, in non-regular graphs typically the
isomorphism type of a small neighborhood of a vertex is determined.

Concerning running time it is possible to perform h-iterations of the algorithm
in O(hm) time, where m is the number of edges of the input graph. To achieve such
a running time, the labels have to be compressed to prevent label names from becom-
ing excessively long. There are two options to do this, one employs techniques such
as bucket sort, while the other one simply uses a hash function to compress the labels
(see [27]). We adopt the latter approach and used the built-in hash function for strings
in our implementation.

In our intended application, we benefit from the fact that the algorithm can take
vertex-labeled graphs as input. Thus it is easy to introduce labeled nodes into the algo-
rithm. In Section 4 we show how Java types (for IDFG) or method signatures (for the
ACG) can be used as initial coloring X in the definition of the algorithm.

3 Similarities

Our goal is to design a similarity score S(P, P’) between programs P and P’ with the
following properties.

— All programs are 100% similar to themselves, i.e. S(P, P) = 1.
— The score is symmetric, i.e. S(P, P') = S(P’, P).
— The score is normalized to a percentage number, i.e. 0 < S(P, P’) < 1.

A percentage score also has the advantage of being more easily interpreted by the user.
We remark that an asymmetric score might be desired in some setting. For example, the
user may be interested in finding a similar program that is also of similar size.

Recall that the Weisfeiler-Leman kernel with & iterations for graphs G and G’ is
defined as follows [16]:

K‘(/S)L(G, G,) = ’LU()K(G(), GE)) + w1K(G1, Gll) + ...+ wh,K(Gh, G;L) (D)

where the G;s and G';s are the graphs produced by successive recoloring of the original
labeled graphs Gy and Gy, (as shown in Fig 1), and K(G;, G}) is a graph kernel for
graphs G; and G;. K %L)L (G, @) is then constructed as a positive linear combination of
the K(G;, G))s using some positive weights w;s.


http://www.csl.sri.com/people/li/
http://www.csl.sri.com/people/saidi/
https://huascarsanchez.com/
http://www.csl.sri.com/people/schaef/
https://http://www.lii.rwth-aachen.de/~schweitzer/

Detecting Similar Programs via the Weisfeiler-Leman Graph Kernel 5

In each iteration of the Weisfeiler-Lehman algorithm, a histogram is produced which
encodes certain structural information of the graph, as shown in Fig 1. Treating these
histograms as vectors, a natural candidate for K is the scalar product of two vectors.
However, this can be problematic when the graph sizes are very different. Consider the
scenario of two graphs G and G’ where |V| < |V’], and all the nodes in G’ have an
identical label [ which exists somewhere in G. We presume G and G’ correspond to
either the API call graph or the inter-procedural data-flow graph generated from pro-
grams P and P’ respectively. Observe that it is easy to have K(G,G) < K(G,G’).
As aresult, P’ might be reported as a more similar program to P than P itself. Hence,
we apply standard normalization using the lengths of the two vectors and use the angle
between the vectors as our similarity measure.

Let v(G;) present the coloring vector (histogram) produced at the 7*” iteration of the
Weisfeiler-Leman algorithm. Then K (G;, G}) = v(G;) - v(G})/||(0(G) | (v (G-
Since we are interested in a percentage score, and 0 < K(G;,G}) < 1 for each 1,
the weights w;s can be chosen appropriately to make 0 < K (Wh)L(G ,G') < 1.1In our
experiments, we simply choose a uniform weight.

4 Graph-based program representations

The ability of our algorithm to detect program similarity strongly depends on the graph
representation of programs that we use when computing the graph kernels. Choosing
a graph representation for programs is a trade off between precision and the ability to
identify programs that serve a similar purpose but are structurally different. Using the
precise control-flow graph of a program, for example, would be an efficient way to
identify exact code clones but would reduce the chance to identify programs that are
semantically similar but syntactically different.

In this paper, we search a balance between precision and flexibility by proposing
two graph representations. We call our first graph API Call Graph (ACG) which is
a stripped-down inter-procedural control-flow graph that only shows calls to a specific
set of APIs. Our second graph is a (simplified) inter-procedural data-flow graph (IDFG)
which tracks the flow of data between memory locations from a given program entry
point.

Both graphs provide a certain level of abstraction. In the following we discuss the
advantages and disadvantages of our design choices along the running example program
in Figure 2. This program has a (public) method reverseFile that takes the names
of two files as input, calls readFile to read the contents of the first file into a string,
reverses this string, and subsequently calls writeFile to write the resulting string to
a file.

We now construct the graph representations for this program using Soot [31]. Soot
first translates the program into an intermediate format called Jimple which provides
us with a canonical form for expressions. For the graph construction, we extend Soot’s
flow analysis to collect the node and edges of our graph per method, where we keep
placeholder nodes for method calls. Then, in a final step, we substitute the placeholder
nodes for method calls by their corresponding graphs. We will discuss details and prac-
tical issues of the graph construction in more detail later on in the evaluation.
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1 |public void reverseFile(String infile, String outfile)
throws IOException ({

2 String data = readFile(infile);
3 data = new StringBuilder (data) .reverse().toString();
4 writeFile (outfile, data);

7 |private String readFile(String fname) throws IOException

{
8 byte[] encoded = Files.readAllBytes (Paths.get (fname));
9 return new String(encoded, Charset.defaultCharset());

2 |private void writeFile (String fname, String data) {

13 try (Writer out = new BufferedWriter (

14 new OutputStreamWriter (new FileOutputStream(fname),
15 Charset.defaultCharset ()));) {

16 out.write (data);

17 } catch (Exception e) {

18 e.printStackTrace();

Fig.2. Running example for our graph representation of programs. The method
reverseFile is the entry point. It takes two file names as input. It reads the con-
tent from the first file to a String using the method readF1ile, reverses the String, and
writes out the reverted String using writeFile.

4.1 API Call Graph

The first graph that we construct is called API Call Graph which represents the order in
which procedures of some given APIs can be called from a given entry point.

The motivation for using an ACG for computing program similarity is our hypoth-
esis that, in Java, programmers often achieve their goals by using external APIs. Pro-
grams that use the same API calls in the same order should have a similar objective,
regardless of the statements in between. A programmer using our approach to find sim-
ilar code might thus be interested in finding any code that shares the usage pattern of a
specific subset of APIs.

For the construction of the ACG, we pick an entry point (e.g., reverseFile
in our example) and the APIs that we are interested in (e.g., in our example we are
interested java.io.x and java.nio. ). Then we follow the control-flow of the
program starting from the entry point. Each time we encounter a call to a method that is
declared in an API that we are interested in, we create a new node for this call. Figure 3
shows the ACG for our example from Figure 2.

The ACG always has a unique source node but can have multiple sink nodes. One
unique sink node always represents the normal termination of a procedure, other sink
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Files.readAlIBytes

PrintWriter.close
|

BufferedWriter.<init>

PrintWriter.close I PrintWriter.close

@ Exception java lang.RuntimeException

Fig. 3. ACG for our example from Figure 2. The ACG approximates the possible se-
quences of calls to methods in java.io.* and java.nio. . The labels are simpli-
fied for readability and usually also encode the types of parameters and return values.

nodes may exist for exceptional returns. In Figure 2 we have exceptional sinks for
RuntimeException and IOException.

Each time we encounter a call to a method that is not part of an API that we are in-
terested in, but for which we have code available, we inline the method call. In Figure 2,
the method calls to readFile and writeFile have been inlined. Any call to meth-
ods defined in java.io.* and java.nio. * is represented by a single node, and all
other calls (such as the calls to reverse and toString in Line 3) get ignored.

For resolving virtual calls, we use a static algorithm that is fast but imprecise. That
is, the ACG only approximates the possible sequences of calls to methods from a certain
API. For example, we do not perform a proper points-to analysis while constructing
the graph and indirect control-flow such as library callbacks is not tracked (but can
be provided by the user). We discuss various sources of imprecision specific to our
implementation later on in the evaluation.
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Fig. 4. IDFG for our example from Figure 2. Vertices are labeled with variable types,
edges represent data-flow. Octagon shaped vertices represent method calls. The actual
operation are omitted from the edges since our algorithm ignores edge labels.

4.2 Inter-procedural Data-flow Graph

Our second graph is an inter-procedural data-flow graph (IDFG). Data-flow graphs are
frequently used in program analysis and compiler optimization. The graph captures the
flow of data between program variables without taking the control-flow into account.
Each node in this graph represents a program variable or memory location. A (directed)
edge between two nodes represents that data from one source node flows into the vari-
able associated with the sink node. This way, an IDFG groups variables together that
interact with each other even if they are not immediately connected in the control-flow.

The motivation of using IDFGs for finding similar programs is that programs that
perform similar algorithmic tasks such as sorting or searching in collections use a sim-
ilar set of base types and perform similar operations on them. In contrast to the ACG
which focuses on finding programs with similar API usage, the IDFG is used to find
programs that use similar algorithms. That is, while we envision a typical scenario for
ACG usage as a user trying to understand how to use a particular API, we think of the
ICFG as a tool to find a method (in an API) that could be used to replace an algorithm
in the user’s program.

Figure 4 shows the IDFG for our example from Figure 2. Each oval node corre-
sponds to a program variable or a new expression, each octagon shaped node is a call
to a procedure that could not be inlined (e.g., because it is a library call to which no
source code is available). To obtain a more canonical representation, we label the nodes
with the types of the program variables instead of the name. As an abstraction, we rep-
resent types that are not visible outside the current application with a question mark.
We discuss possible ways of how to represent non-primitive Java types in the IDFG in
the future work.
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S Evaluation

5.1 Evaluation of Code Similarity using IDFG

We use the CodeJam dataset as a benchmark for evaluating our method of finding sim-
ilar programs. This dataset consists of all the solutions to programming problems used
in the Google Code Jam competition from 2008 to 2015. One advantage of using the
CodeJam dataset is that the problem-solution setting acts as a free oracle for check-
ing whether two programs are similar, since two solutions of the same problem must
be input-output equivalent for the set of input test cases provided by Google (although
several algorithms may exist as acceptable solutions). One downside of this dataset is
that since the problems are highly algorithmic in nature (as opposed to large software
design), many solution programs just operate on built-in datatypes and the only library
classes that are frequently used are String and StringBuffer. This restricts our
graph choices to IDFG instead of ACG. Another downside is that code quality is rela-
tively low compared to well established open-sourced projects since the programs were
produced in a competition environment with tight time constraints. An undesirable ef-
fect of this is that some programs could not be included in the experiments because of
non-standard entry points (no main method), or other compilation issues (non-unicode
characters in the source files).

Setup. We randomly selected four problems from the CodeJam dataset. There are 1280
Java programs in total in this subset. For each of the programs, we first create an inter-
procedural data-flow graph as describe in Section 4 for its top-level entry point (usually
the main method). Then, for each program, we use our graph kernel based method to
find the top k most similar programs to it from the rest of the 1279 programs. Since
these programs are known to solve one of these four problems, we consider a similar
program found to be correct if it solves the same problem. Our goal of this experiment
is to evaluate how well our method identifies the appropriate similar program.

Results. We first evaluate how accurately our method can find the most similar pro-
gram. As a baseline comparison, a random guess would have an accuracy of 25%. The
accuracy of our method is 77.8%. If we increase k to 2, i.e., consider the top 2 most
similar programs found and check if any one of them is from the same programming
problem, then the accuracy increases to 87.9%. In general, a larger k will produce better
accuracy but at the expense of user experience and effort, since the user would have to
spend more time reading these programs and some of them are irrelevant to her task.

We also consider using a threshold value on the similarity score for filtering the
similar programs found. If the most similar program found still has a similarity score
lower than the threshold, then the program is not shown to the user. Fig. 5 shows the
results of using different threshold values In our case, precision tops at a threshold
of around 0.6. On the other hand, accuracy decreases monotonically with increasing
threshold value.

Discussion. The experiments above show that our graph kernel based approach can
effectively identify similar programs. However, to our surprise, a threshold value is not
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Fig. 5. Accuracy, precision and recall values plotted at different threshold values. Ac-
curacy is the percentage times the program found is from the same problem and has a
similarity score higher than the threshold, or it is from a different problem but is re-
jected because of a lower than threshold score. Precision is the percentage of correctly
identified programs with a higher than threshold score over all programs with a higher
than threshold score. Recall is the percentage of correctly identified programs with a
higher than threshold score over all correctly classified programs that would have been
returned without using the threshold.

needed to achieve the highest accuracy (although one is needed for precision). This
indicates that even a low similarity score may be sufficient to distinguish the kinds of
programs, given the large space of possible implementations. We plan to include the
rest of CodeJam for a more comprehensive evaluation in the future.

Threads to Validity. One internal threat to validity is the fact that several different al-
gorithms may exist for the same programming problem, leading to widely different
implementations. While IDFG encodes semantic information of the program as data-
flow, it still follows closely the structure of the program. This means IDFG will likely
fail to capture the fact that different algorithms and implementations are designed to
solve the same problem. An external thread to validity is that we are only using four
problems in our evaluation. We are currently working on evaluating our method on the
whole CodeJam dataset. However, as mentioned earlier, these programs only represent
codes that are highly algorithmic in nature and they still only constitute a tiny fraction
of open-sourced programs.
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5.2 Evaluation of ACG similarity

Using the ACG to find similar programs on the CodeJam corpus turned out to be infea-
sible. The programs in CodeJam are of a very algorithmic nature and mostly operate on
the built-in types of Java. The only library classes that are frequently used are St ring
and StringBuffer which are used to log results. Hence, building ACGs for these
programs did not produce any interesting results.

To evaluate the usefulness of the ACG for finding similar programs, we set up a
different experiment where we compute ACGs for every method in the Apache project
commons—lang which is a library that provides utilities for common tasks such as
handling dates or serializing objects.

We choose commons—1ang as a benchmark because it uses large parts of the Java
packages java.lang and java.util which we can use in the ACG construction.
Since we do not have an oracle to decide if two methods are similar like in the case
of CodeJam, the moderate size of commons—1ang helps us to examine the similarity
results by hand.

The goal of this experiment is to evaluate whether methods considered similar based
on ACG isomorphisms are indeed similar. To that end, we choose the following exper-
imental setup: for each method in commons—-1ang, we compute an ACG for all calls
to methods in java. excluding String and StringBuffer. We inline calls to
methods inside commons—1ang up to depth four. Method calls that exceed this limit
are dropped from the ACG. While running the experiments, we experimented with in-
lining depth up to ten which did not change the results significantly.

If the ACG of a method has less than four nodes (i.e., two calls to library methods
and source and sink), we drop it since we are only interested in methods that make at
least two library calls.

Results. In total, we processed 3017 methods. Out of these, 660 methods had an ACG
with at least four nodes. For each constructed ACG we identify the two most similar
methods (excluding the method itself) which results in a total of 1320 pairs of ACGs
together with their similarity values.

In 686 of these 1320 cases we found a real isomorphism (with a similarity of 100%).
In 4 cases, we found a similarity between 99 and 80%, in 8 cases a similarity between
79 and 60%, in 24 cases between 59 and 40%, and all other similarities were below
40%.

The most notable part of our experimental result is the high number of real iso-
morphisms (over 50%). To get an intuition where these isomorphisms come from, we
investigated 40 methods by hand. In 27 of the 40 cases, the graphs were isomorphic be-
cause both methods only contained a single statement calling the same method. Hence,
due to inlining, the ACGs were identical. In the remaining cases, the methods indeed
used the same set of library calls such as iterators over collections or modifications of
Date objects. We emphasize that this high number of isomorphisms is a result of our
experimental setup and this would not be the case when searching for similar methods
in a different code base.

In the four cases where methods had a similarity between 99 and 80%, the methods
were slightly different but shared a number of API calls. One example of this is the
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similarity between DateUtils.round and DateUtils.ceilling. The round
method calls to another method that is almost identical to ceiling (this method and
ceiling are in fact isomorphic).

In the similarity range between 79 and 60%, we still find interesting results. Exam-
ples of similar procedures are pairs like FormatCache.getDateTimeInstance
and FormatCache.getTimeInstance which, without going into the details of
the code are understandably similar by looking at their names. Five of the eight simi-
larities between 79 and 60% were cases where one method called to other.

Similarities between 59 and 40% were, for example, found in the StringUtils
class between methods like endsWithAny and startsWithAny, or removeEnd—
IgnoreCase and removeStartIgnoreCase which, as their naming suggests,
perform very similar tasks. Other cases of 50% similarity are different methods to find
threads in ThreadUtil. These methods all iterate over a collection of Thread ob-
jects but use different methods to filter this set.

Even methods with a similarity below 40% still were interesting in many cases. For
example for the method LocalUtils.countriesByLanguage the most similar
method was LocalUtils.languagesByCountry,orforFraction.divide-
By the most similar method (with 18% similarity) was Fraction.multiply. Only
when we reach a similarity of below 15%, the results become less useful.

Discussion. This experiment shows that similarity based on the ACG is indeed useful
to identify methods that serve a similar purpose. We emphasize that our experimental
setup of finding similarities in the same code-base is certainly biased towards finding
many isomorphic graphs, so the success rate of finding similar code with this approach
can not be generalized from this experiment. What the experiment shows, however, is
that methods with a similarity between 99% and 20% are still very similar even if they
do not share code and that the approach hardly produces false alarms. For the method
pairs that we inspected, there was no case where we could not spot the similarity.

Threats to Validity. Several threats to validity have to be discussed in this experiment.
We already mentioned that searching for similar methods in the same code base is
biased towards finding many isomorphic graphs. For a less biased experimental setup,
we would need labeled data like in the case of CodeJam. We would need an oracle that
can decide if methods are similar to measure how often our approach does not find a
similar method where one exists. Unfortunately, we do not have such an oracle but it is
part of our future work to build up a corpus to further evaluate our approach. Another
thread to validity is the choice of java.* as an API and commons-1lang as code
base. In the future work we will experiment with more code bases and different APIs
but within the scope of this paper we believe that this experiment is sufficient to convey
our idea.

6 Related Work

The problem of finding similarities in source code is a known problem in software
engineering. It crops up in many software engineering contexts as diverse as program
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compression [5], malware similarity analysis [3], software theft detection [14], software
maintenance [7], and Internet-scale code clone search [25].

Previous research in program similarity has focused more on detecting syntactic
similarity [24] and less on detecting semantic similarity, as the latter is generally un-
decidable. We can classify these different approaches into five categories: Text-based,
Token-based, Tree-based, Semantic-based, and Hybrid.

In text-based solutions, the source code of a program is divided into strings and
then compared against another. Under this type of solution, two programs are similar if
their strings match [2]. In token-based solutions (lexical), the source code of a program
is transformed into a sequence of lexical tokens using compiler style lexical analysis.
The produced sequences are then scanned for duplicated subsequences of tokens. The
representative work here is Baker’s token based clone detection [2]. In tree-based so-
lutions, the source code of a program is parsed in order to produce an abstract syntax
tree (AST). The produced AST is then scanned for similar subtrees. The representative
work here is Jiang’s Deckard [10]. In semantic-based solutions, a source code is stati-
cally analyzed to produce a program dependency graph (PDG) [6]. Then, the program
similarity problem is reduced to the problem of finding isomorphic graphs using pro-
gram slicing [13]. In hybrid solutions, both syntactic and semantic characteristics are
used to find similar code. The representative work here is Leitao’s hybrid approach for
detecting similar code. This hybrid approach combines syntactic techniques based on
AST metrics, semantic techniques (call graphs), and specialized comparison functions
to uncover code redundancies [15].

The approach presented in this paper can be seen as a hybrid solution as well. It
identifies similar programs using graph similarity like semantic-based solutions but is
agnostic to the kind of graph that is being used. For example our ACG is more of a
syntactic representation and the IDFG more a semantic representation of the program.

When considering similarity measures of graphs one has to carefully distinguish
between measures that are applied to labeled graphs and measure applied to unlabeled
graphs. A labeled measure d may use information of the vertex names. For example the
edit distance is usually defined for two graphs G1 = (V, E;) and G2 = (V, E3) over
the same vertex set as d(G1, Ga) = |E1 \ Ea| + |E2 \ Ey|. It captures the amount of
edges/non-edges that need to be altered to turn the one graph into the other. In contrast
to this, a measure for unlabeled graphs is not allowed to depend on the names of the
vertices, that is for a permutation 7 of the vertices of G5 we must have that d(G1, Gs) =
d(Gl, W(GQ))

An overview over some graphs similarity measures is given in [26]. Labeled graph
similarity measures are not suitable for our intended applications. Indeed, the names of
the vertices of the IDFG and ACG do not seem to carry relevant information. (This is
different for the labels that are assigned by the algorithm, which carry structural infor-
mation, as discussed earlier.) The question remains which unlabeled graph similarity
measures are suitable to capture code similarity? From a conceptual point it appears
that the occurrence of substructures of certain kinds in a node’s vicinity is related to
the purpose of a code snippet containing said node. This is supported by the findings
in [20], [16], [21] and [22]. Guided by this insight, we chose the similarity based on
Weisfeiler-Leman algorithm for our purposes. While it detects similar information as
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subgraph counts, it provides us with two significant advantages. On the one hand it
is very efficiently computable, which not the case for subgraph detection, as also ex-
plained in [16] and [22]. On the other hand it easily allows us to exploit the label infor-
mation of different types of graphs generated from programs.

7 Conclusion

We have presented a generic algorithm to compute program similarity based on the
Weisfeiler-Leman graph kernels. Our experiments suggest that the algorithm performs
well for the IDFG and ACG representation of Java code that we proposed. However, we
believe that our algorithm will also perform well with other graph-based models.

We see several interesting applications that we want to pursue as future work: one
interesting property of graph kernels is that a combination of two graph kernels is again
a graph kernel. In the case of the ACG, this would allow us to compute separate ACGs
for different APIs (e.g., java.lang and java.util) and either use them in isola-
tion or combine them, which would allow us to build more efficient search algorithms.
Another interesting application would be to combine kernels from entirely different
graphs, such as the ACG and the IDFG to experiment with new concepts of similarity.

Further, using graph kernels makes it easy to experiment with different graph rep-
resentations. One could for example use a simplified version of a control-flow graph or
use a more abstract labeling of the nodes to model different kinds of program similarity.
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