
Gamifying Program Analysis

Daniel Fava,1 Julien Signoles,2 Matthieu Lemerre,2

Martin Schäf,3 Ashish Tiwari3

1 University of California, Santa Cruz
2 CEA, LIST, Software Reliability and Security Laboratory,

P.C. 174, Gif-sur-Yvette, 91191, France
3 SRI International

Abstract. Abstract interpretation is a powerful tool in program veri-
fication. Several commercial or industrial scale implementations of ab-
stract interpretation have demonstrated that this approach can verify
safety properties of real-world code. However, using abstract interpreta-
tion tools is not always simple. If no user-provided hints are available,
the abstract interpretation engine may lose precision during widening
and produce an overwhelming number of false alarms. However, manu-
ally providing these hints is time consuming and often frustrating when
re-running the analysis takes a lot of time.

We present an algorithm for program verification that combines ab-
stract interpretation, symbolic execution and crowdsourcing. If verifica-
tion fails, our procedure suggests likely invariants, or program patches,
that provide helpful information to the verification engineer and makes it
easier to find the correct specification. By complementing machine learn-
ing with well-designed games, we enable program analysis to incorporate
human insights that help improve their scalability and usability.

1 Introduction

Abstract interpretation [1] is a powerful technique for program verification. Tools
like Astrée [2] and Frama-C [11] have successfully demonstrated not only that
abstract interpretation is able to prove the absence of run-time errors in real-
world C programs, but also that it is commercially viable to do so.

To verify a given program P , abstract interpretation approximates the se-
mantics of P based on monotonic functions. The analysis symbolically executes
P keeping a set of possible states at each program point. If an error is not reach-
able in this abstraction, we have a proof that this error is also not reachable in
the original program.

Unfortunately, even if these tools are fully automated, it does not mean that
using them is simple. Sometimes, in particular when analyzing looping control-
flow, abstract interpretation loses precision and the set representing the possible
states of the analyzed program becomes too imprecise. This can result in a large
number of false alarms, up to a point where the only option is to abort the anal-
ysis. In these cases, to help the analysis regain precision, a verification engineer



has to step in and provide hints in the form of code annotations or custom pa-
rameterizations. In the case of large programs, writing these annotations can be
a painful experience. The process tends to be incremental because an annotation
that was used to drive the analysis forward may be insufficient a few statements
later. In other words, previous annotations which were considered sufficient may
have to be revised because they were either too weak or too strong to continue
the analysis at a later point in the program. This leads to a labor intensive
process that is also costly because, in order to provide useful annotations, the
analyst not only has to understand the analyzed code, but also the details of the
abstraction used by the verification engine.

In an effort to lower the cost of applying abstract interpretation, we have
seen a new trend of using machine learning to identify likely invariants. The
idea is to collect two sets of concrete program states that are either part of
a successful execution (good states) or failing executions (bad states), and use
machine learning to find a classifier that separates those sets. Approaches such
as Daikon [5], ICE [8], and work by Sharma et al. [15–17], have successfully
demonstrated that machine learning can be used to learn likely invariants. Un-
like widening, which is commonly used in abstract interpretation to generalize
program behavior, machine learning can also provide generalization guarantees.

However, there are limitations to using machine learning for finding likely
invariants. First, collecting good states and bad states is expensive (if it were
easy to enumerate them, we would not need abstraction) and thus the machine
learner has to operate on a small data set. This increases the risk of over-fitting.
Second, learners have a tendency to produce large invariants that are not fit
for “human consumption.” And third, machine learners operate on a hypothesis
space which allows them to express certain kinds of knowledge and empowers
them with the ability to generalize. However, there can be mismatches in the
type of representation strength of a classifier and the domain of the program
under analysis.

We present an approach that combines abstract interpretation, machine learn-
ing, and crowdsourcing to learn likely invariants. We have developed a system
called Chekofv that maintains three values at each program point:

1. a set of states, which represents our current estimate of the likely invariant
at that program point,

2. a set of good states, which are concrete states such that executions starting
from those states do not cause any assertion violations, and

3. a set of bad states, which are concrete states such that executions starting
from those states cause an assertion violation.

None of these sets is necessarily a strict over- or under-approximation of the
reachable set at that program point. We use abstract interpretation to initialize
the first set, but later update it with likely invariants learnt using machine learn-
ing or crowdsourcing. The set of good and bad states are collected using testing
and symbolic execution, and they form the inputs for the machine learning and
crowdsourced games. In particular, Chekofv complements machine learning pro-



cedures by using two games, Xylem [14] and Binary Fission4. These games enable
the non-expert crowd to solve the problem of finding likely invariants. The first
game, Xylem, resembles Daikon: for a given set of states, the player has to find
a predicate that describes all states. The second game, Binary Fission, gamifies
a decision tree learning procedure: the player is presented with a set of good
states and bad states, and she has to generate a classifier to separate these sets.

The intuition is that crowdsourcing has three major benefits over machine
learning: 1) invariants are not limited by a particular kernel function or hypoth-
esis space; instead, we can obtain a very diverse set of solutions from different
players; 2) humans tend to produce invariants that are readable (unlike the
machine, which can produce illegible predicates); 3) given our natural limita-
tions handling large amounts of data, we believe that humans are less likely to
produce a solution that overfits. The crowdsourced experiment has to run long
enough for a reasonable set of solutions to be available. However, compared to
the several man-months of effort of verifying a real system, this may still be
a cheap preprocessing step. Another potential problem is that human intuition
breaks at high dimensions, and the dimensionality of the data to be classified
depends on the number of variables in scope at a particular program point. This
is why, when designing a verification game, the choices of visualization and data
representation are important.

Our tool Chekofv shares several similarities with machine learning based
approaches such as [16]. We perform an abstract interpretation of a given C

program using the plug-in Value of Frama-C. Each time when we reach a program
location where Value loses precision (e.g., due to widening or unspecified inputs),
we use dynamic or symbolic execution to collect good and bad states. Unlike
previous approaches, we use these sets as input to the two games described
above. The games produce likely invariants which are then inserted as assertions
into the program. This process is iterated until we cannot find any bad state
that satisfies our current invariant and we cannot find a good state that violates
this invariant. Unlike [16] where the focus is on verification, we use the approach
to also generate preconditions and checks as suggestive program patches for the
developer.

In the following, we discuss our infrastructure, provide a motivating example
and an overview of our crowdsourcing game. Our main contribution is the pro-
gram analysis and patching procedure that combines abstraction interpretation
with machine learning and crowdsourcing via gamification. A secondary goal is
to increase the visibility of our games and get feedback from the community.
We hope to collect enough data this way to perform a statistically significant
study that compares the quality of crowdsourced invariants with the quality of
machine learned ones.

4 http://chekofv.net/

http://chekofv.net/


2 Related Work

The idea of learning likely invariants from program states goes back to Daikon [5].
Daikon learns likely invariants from a given set of (good) program states by
working with a fixed set of grammar patterns. Numerous approaches have used
Daikon; for example, iDiscovery [18] uses symbolic execution to improve on
Daikon’s invariants. Similar to our approach, it inserts the learned invariants
back in the code under analysis and then uses symbolic execution to confirm or
break these candidate invariants. This process generates new states that can be
fed to Daikon and can be iterated until either an inductive invariant is found,
or symbolic execution fails to generate new states.

Sharma et al. [16] formulate the problem of extrapolation in static analy-
sis as a classification problem in machine learning. They also use good and bad
states and a greedy set cover algorithm to obtain loop invariants. In a follow
up work, a similar algorithm to detect likely invariants using randomized search
is described [15]. While our approach is similar in the sense that we learn in-
variants from good and bad examples, our application is different. Rather than
finding accurate loop invariants, we are interested in finding human-readable an-
notations using crowdsourcing that prevent abstract interpretation from losing
precision.

The architecture of our approach strongly resembles the decision tree learning
based approach of DTInv [12]. In fact, the authors of that paper kindly provided
their implementation which we use to test our approach. The key difference be-
tween the two techniques is that we use gamification instead of machine learning
to find invariants.

Another popular approach for learning likely invariants is the ICE-learning
framework [8]. Similar to Daikon, ICE-based algorithms search for invariants by
iterating through a set of templates. Unlike Daikon, ICE does not discard likely
invariants that are inductive. Instead, it checks a set of implications to decide if
the counterexample is a new good or bad state.

Predicate abstraction [9] based on abstract interpretation has also been used
to learn universally-quantified loop invariants [7] and was implemented in ESC/-
Java [6]. This approach may require manual annotations to infer smart invari-
ants. It is a 100% correct technique but at the price of precision. Counterexample
driven refinement has been used to automatically refine predicate abstractions
and reduce false errors [10]. Fixpoint-based approaches have also been stud-
ied [3]; however they do not explicitly generate bad states, unlike the work we
describe here.

An approach to gamify type checking has been presented by Dietl et al. [4].



3 Motivating Example

We explain how Chekofv works by dissecting the famous Heartbleed bug in
OpenSSL.5 The code snippet that caused the bug is sketched in Figure 1. For
space reasons, we omit a few lines from the original code which are not relevant
to understanding the bug.

1 int dtls1_process_heartbeat(SSL *s)

2 {

3 unsigned char *p = &s->s3->rrec.data[0], *pl;

4 unsigned short hbtype;

5 unsigned int payload; // message size

6 unsigned int padding = 16;

7
8 hbtype = *p++;

9 n2s(p, payload); // read message size from input

10 pl = p;

11
12 if (hbtype == TLS1_HB_REQUEST)

13 {

14 unsigned char *buffer , *bp;

15 buffer = OPENSSL_malloc (1 + 2 + payload +

padding);

16 bp = buffer;

17
18 *bp++ = TLS1_HB_RESPONSE;

19 s2n(payload , bp);

20
21 memcpy(bp, pl, payload);

Fig. 1. Heartbleed bug in OpenSSL. The problem in this snippet is that, when calling
memcpy in line 21, we cannot guarantee that pl is actually of size payload. That is,
by providing a wrong payload, an attacker is able to read a few bytes of arbitrary
memory.

The bug is a missing bounds check in the heartbeat extension inside the
transport layer security protocol implementation. A heartbeat essentially estab-
lishes whether another machine is still alive by sending a message containing
a string (called payload) and expecting to receive that exact same message in
response. The bug is that, although the message also contains the size of this
payload, the receiver does not check if this size is correct. Therefore, an attacker
can read arbitrary memory by sending a message that declares a payload size
that is greater than the actual message.

5 http://blog.cryptographyengineering.com/2014/04/

attack-of-week-openssl-heartbleed.html

http://blog.cryptographyengineering.com/2014/04/attack-of-week-openssl-heartbleed.html
http://blog.cryptographyengineering.com/2014/04/attack-of-week-openssl-heartbleed.html


Figure 1 shows the part of the code that processes a heartbeat message.
On line 3, the pointer p is set to point to the beginning of the message. Then,
on line 8, the message type is read, and on line 9, the size of the payload is
read through the macro n2s which reads two bytes from p and put them into
payload. However, since the whole incoming message might be controlled by an
attacker, there is no guarantee that this payload really correspond to its actual
length and there is no check in the code. Indeed payload might be as much as
216 − 1 = 65535. Line 10 then puts the heartbeat data into pl.

In line 15, a buffer is allocated and its size is actually as much as 1 + 2 +
65535 + 16 = 65554. Then lines 18 and 19 fill the first bytes of the buffer with
the type and the size of the response message. Finally, line 21 attempts to copy
the heartbeat data from the incoming message to the response through a call to
memcpy. Since the payload can be longer than the actual size of pl, close-by data
in the memory (included potential confidential user data) may be inadvertently
copied.

Frama-C can detect this bug. It adds an implicit assertion just before the
memcpy that enforces bp and pl to be at least of size payload. Since it cannot
prove this property, it warns about a potential bug. However, since this is not
the only warning emitted by Frama-C, chances are it will go unnoticed.

Let us now see how our approach can make it easier for a human analyst
who is employing Frama-C to notice this bug. First, even if it does not ap-
pear in Figure 1, the length of &s->s3->rrec.data[0] is fixed and equal to
SSL3 RT HEADER LENGTH. Starting with the abstract state computed by value
analysis at line 10, the abstract state looks roughly as follows:

hbtype ∈ [0, 255] (a one-byte positive integer)

payload ∈ [0, 216 − 1] (a two-byte positive integer)

sizep = SSL3 RT HEADER LENGTH− 3

padding = 16

For readability, we use this abbreviated version of the abstract state computed
by Frama-C. The actual abstract state would contain a lot more information
about the input parameter s, about the value of p, pl, and about other global
variables. The important thing to note in this abstract state is that payload

can be an arbitrary two-byte unsigned integer, while the size of the allocated
memory for pointer p is fixed and equal to SSL3 RT HEADER LENGTH− 3.

Since none of the variables in the abstract state depicted above is modified by
any statement until line 21, these variables will have the same intervals. Hence,
the implicit assertion that payload ≤ sizep which is required by memcpy does
not hold.

Now, we use symbolic execution to refine our abstract state just before line 10.
We pick this program point because it assigns a value from an unknown source
to a variable. Chekofv refines all states where we receive unknown inputs (user
input, files, network, etc), or we lost information due to widening (e.g., after
loops).



Fig. 2. Data points collected by our symbolic execution for payload and sizep. A plus
indicates a good state and a minus indicates a bad state.

First, we collect bad states that lead to assertion violations. To that end, we
construct a precondition that ensures that the symbolic execution may only pick
initial values that are in our current abstract state. The symbolic execution will
then search for concrete states from which the assertion can be violated. Next,
we need to collect good states from which the assertion is not violated. We can
either use the same symbolic execution approach that we used to collect bad
states or fall back on data from previously recorded test cases, if available.

Figure 2 shows the distribution of the collected data points for payload and
sizep. As discussed above, all good states (depicted by a plus sign) are states
where sizep is greater or equal to payload. All bad states (shown as a minus
sign) are states where payload is greater than sizep. Using these data points,
we can now employ our crowdsourcing games (or a machine learner) to find a
classifier (that is a likely invariant) that separates the good states from the bad
states. The ideal classifier would be payload ≤ sizep. However, let us assume
that our symbolic execution picked extreme values and we get an over-fitted
invariant 2 ∗ payload ≤ sizep.

We merge the invariant 2 ∗ payload ≤ sizep into the program at line 10
and re-run our Value analysis. The invariant refines the abstract state at line 10
such that payload is in the interval [0, sizep/2]. Hence, the assertion violation in
line 21 is now gone and we know that we cannot find new bad states that violate
this assertion. However, we still have to ensure that the inserted invariant did
not throw away too many good states. Thus, we start our symbolic execution
again, this time with the precondition that the invariant does not hold (i.e.,
2 ∗ payload > sizep and thus the abstract value of payload is [size p/2 +
1, 216− 1]). This will reveal new good states that ensure that we cannot find the
same invariant again. This loop is repeated until we cannot find new good or bad
states. We mark likely invariants where this is the case as potential solutions.
However, we do not stop the crowdsourcing immediately because there might be
several invariants that have this property.

Eventually, Chekofv finds the invariant payload ≤ sizep for line 10 which is
sufficient to prove the assertion in line 21. Note that we cannot actually prove
that this is an invariant (in fact it is not an invariant because there is a bug). It
is a likely invariant that shall help the verification engineer when verifying the
program. In the remainder of this paper, we show the architecture of Chekofv
and how it finds likely invariants using crowdsourcing.



C Program

Frama-C
Value Analysis

Crowdsourcing Good and Bad
Program States

Abstract
States

Symbolic and
Dynamic Execution

Annotations

Fig. 3. Overview of our Chekofv system. Chekofv takes a C program as input and per-
forms an abstract interpretation. If abstract interpretation fails to verify the program,
the computed abstract states are passed to a symbolic execution engine to sample con-
crete good and bad states. These sets are then passed to our crowdsourcing games to
compute likely invariants which are inserted back into the program. This loop termi-
nates if either the program is verified or the invariants cannot be improved further.

4 Overview of the Chekofv System

Our approach to learn likely invariants to assist abstract interpretation is imple-
mented as part of the Chekofv system outlined in Figure 3. The system takes a
given terminating C program as input and returns either a proof of correctness
or a copy of the input program annotated with the learned invariants and a set
of assertions that could not be verified.

Our procedure for program analysis is as follows:

1. Initialize: At every program point, initialize the likely invariant to true, good
states to ∅ and bad states to ∅.

2. Update1: Update the likely invariant at each program point using abstract
interpretation. Terminate with success if all assertions are verified. If the
likely invariants are left unchanged, goto Terminate.

3. Update2: Find new good states that lie outside the current likely invariant,
and new bad states that lie inside the current likely invariant. If such states
are found, add them to the set of good and bad states at each program point.
Otherwise, goto Terminate.

4. Update3: Use the current set of good and bad states to learn an invariant,
using either machine learning or crowdsourcing, and use it to update the
likely invariant at each program point. If we fail to separate good and bad
states, then goto Terminate, else goto Update1.

5. Terminate: Terminate with the likely invariants as hints for the verification
engineer.

We now describe the different pieces of the procedure above as implemented
in Chekofv.

Abstract Interpreter. Chekofv uses the Frama-C plug-in Value to perform ab-
stract interpretation, which computes, at each program point, an abstract state



Fig. 4. Example of abstract states, concrete states, and likely invariants. Assuming
a program over two variable x and y, the possible values of these variables form a
two-dimensional space. The parallelogram describes a possible abstract state. Plus and
minus refer to known concrete good and bad states. A likely invariant is a plane that
cuts the parallelogram in two parts, one containing only good states, one containing
only bad states.

that over-approximates the set of all possible states the program may be at that
point. The abstract state is a mapping from every memory location to the set
of possible values that this location may have at the current program point. If
the value is an integer, possible values are represented using an interval and a
modulo as soon as the number of such values becomes too large (small sets are
represented in an exact way). If the value is a floating point, only an interval is
used. Pointers are represented using an interval per memory region where the
pointer may point. Frama-C emits a warning if it cannot prove that the execu-
tion of an (implicit) assertion always succeeds from the current abstract state.
If Frama-C does not emit any warning, we have a proof that the program is safe
and our analysis terminates.

If we fail to prove that the given program is safe, the program either has a
genuine error, or some of our abstract states were too imprecise to prove the
program’s safety. To refine this result, we try to learn likely invariants for each
program point.

Good and Bad States. For a given program point in our input program, Frama-
C gives us the corresponding abstract state. This abstract state, as depicted in
Figure 4, contains a subset of good states and bad states. Good states are program
states from which the program terminates normally. Bad states are (possibly
unreachable) program states which lead to an assertion violation. Further, the
abstract state may contain states that are not reachable but also do not violate
any assertion and states that are reachable but lead to non-termination (we do
not handle non-termination). Our goal is to learn an invariant for this program
point that excludes all bad states and preserves all good states.

Note that, if the program is actually unsafe, such an invariant cannot be
established because there exists a reachable bad state starting from this program
point. That is, these invariants (when violated) can help the verification engineer
to trace a safety property violation back to its origin.

Unfortunately, we cannot compute the set of good and bad states automati-
cally (otherwise we would not need abstract states), so we can only approximate
the invariant that we are looking for. To that end, we use symbolic execution
to sample good and bad states. As sampling the good and bad states is only an



under-approximation, the likely invariants that we learn may be too strong or
too weak. Hence, we may need several passes through the program until we find
a suitable likely invariant.

Sampling Bad States. To find a state which results in an assertion violation, we
employ a symbolic execution tool to check if an error state is reachable from
any state in the abstract domain of the current program point. That is, we turn
the current abstract state into a precondition (or an assume statement) for the
symbolic execution. For each variable v with an abstract domain v ∈ [min,max],
we add a conjunct min ≤ v ≤ max to the precondition. If symbolic execution
finds a reachable error state under this precondition, we add it to the set of bad
states. If the program point we are analyzing is the program entry, or if we know
that our precondition only describes reachable states, we have found a genuine
error.

Sampling Good States. The easiest way to collect good states is to run the pro-
gram and monitor its state with a debugger. If no test cases are available, finding
good states is more challenging and we can instead employ symbolic execution
(similar to how we have described the generation of bad state above). However,
since we might have inserted a too strong invariant in a previous iteration of
a loop, symbolic execution may fail because the set of possible states to start
from is, for example, empty. To avoid this problem, we also check if there exists
a state outside the current abstract domain from which an execution terminates
normally. Here, we proceed in a similar way as for the bad states but we com-
pute a precondition for the complement of the current abstract state. This step
is important to prevent the machine learning from producing overly strong likely
invariants.

Once we have collected the sets of good and bad states, we can start look-
ing for a likely invariant. Finding this likely invariant can be seen as a binary
classification problem in machine learning. We are looking for an approximation
of a function that labels all good states as good and all bad states as bad. The
connection between invariant generation and classification has been explored in
many recent works [8, 12, 15–17]. Instead of using machine learning, we propose
a crowdsourcing solution to perform this classification.

Gamification of Machine Learning. The main contribution of this paper is the
use of crowdsourcing as an alternative to machine learning. The motivation is
to avoid two problems that are inevitable when using machine learning: over-
fitting, and limited expressiveness of the kernel function. Over-fitting is an in-
herent problem to machine learning when operating on small data sets. If only a
small number of points is available, the machine learner may find a formula that
describes exactly this set, resulting in a large formula with no predictive power.
This is in particular relevant because we cannot collect arbitrary large sets of
good and bad states. Gamification reduces this risk because different players
may come up with different solutions, and humans are usually good at finding
the easiest solution.



The second issue that we are trying to tackle by gamifying machine learning
is the limitation of using a fixed kernel function in machine learning. Fixing a
kernel function (e.g., conjunctions of linear inequalities) is vital for a machine
learner to find a good solution, but it is not clear a priori which kernel function
to pick. By gamifying machine learning, we do not have to fix a kernel function
and can allow players to come up with arbitrary invariants.

We have developed two games, Xylem and Binary Fission, that crowdsource
the machine learning aspect of Chekofv. Xylem is a gamification of Daikon while
Binary Fission is a gamification of decision tree learning. These games are dis-
cussed in detail in Section 5. Both games interface with Chekofv in the same way
as a machine learner would. They receive sets of good and bad states and return
likely invariants. We merge the learned (likely) invariants into the program and
start over with the first step of our analysis by recomputing the abstract states
with value analysis.

Termination. Chekofv terminates if either the system is verified, or one of fol-
lowing situation occurs:

– Failure to find new good and bad states: Symbolic execution can fail to find
new states. This may happen because the problem of finding good and bad
states is undecidable in general and very expensive in practice. In this case,
we terminate with the last learned invariants as a hint for the verification
engineer.

– Failure to classify good and bad states: For crowdsourcing this may happen
because the games do not have enough players, or the needed invariant is not
expressible with the tools offered by the game. The latter case is equivalent
to the case where a machine learner fails due to the choice of the kernel
functions. Assuming that the language of the game or the kernel function of
the machine learner are strictly more expressive than the abstract domain
of Frama-C, we can terminate reporting the last learned invariants.

– Failure to improve abstract domain with the learned invariants: This may
happen because the language of the likely invariants is more expressive than
what can be expressed in the abstract domain. In this case, we know that
there are bad states that cannot be excluded in the current abstract domain
and we can report a warning that the current abstract domain is not sufficient
to verify the program.

5 Crowdsourcing games

To crowdsource the problem of finding likely invariants, we have developed
two games, Xylem [14] and Binary Fission. Both games are available online
at chekofv.net.

Xylem. The goal of Xylem is to generate new predicates that can be used for in-
variant construction. Players are presented with a sequence of (good or bad) pro-
gram states and are asked to find a non-linear inequality that is satisfied by these

http://chekofv.net/


states. In that sense, Xylem can be seen as a crowdsourced version of Daikon. To
cap the cognitive load on players, Xylem splits the predicate construction prob-
lem into several game levels, with each level being composed of a limited number
of states and a subset of variables. To ensure that we obtain a diverse set of so-
lutions, Xylem gives different subsets of states and variables to different players.

Fig. 5. Screenshot from Xylem

Figure 5 shows a scene of the game.
Players takes on the role of a botanist
exploring new forms of plant life on a
mysterious island. Program states are
presented as growth phases of a plant
in the top half of the screen. Each
variable in the state is presented as
a blossom of distinct color. The num-
ber of petals per blossom represents
a variable value in the current state.
At each level, players are presented
between four and ten states and are
asked to create a predicate that holds
on all of the states. The bottom half
of the screen contains a toolbox that
is used to assemble the predicate; the
toolbox contains variables (i.e., blossoms), numbers, operators, and helper func-
tions such as array length. This toolbox was a challenging part of the game
design and remains an open area of research. The major difficulty is in strik-
ing a balance between user interface simplicity at the same time as providing
sufficiently expressive constructs with which players can generate predicates. As
players assemble predicates from the elements in the toolbox, the growth phases
that satisfy the current predicate turn green while others turn red. Players can
submit a predicate once all growth phases are green. That is, the game guaran-
tees that the resulting predicate is a valid invariant for the given subset of states
and variables (note that the predicate does not have to be an invariant on the
data as a whole).

Binary Fission. In Binary Fission, players construct likely invariants from a
fixed set of predicates. To that end, players are presented with good and bad
states represented by blue and brown dots as shown in Figure 6. The ob-
jective is to separate the two sets by building a decision tree. All states are
initially mixed together in a single root node. The player can then choose a
predicate from the given set and apply it to the root. Applying a predicate
to a node generates two child nodes, one containing all states that satisfy the
applied predicate and another containing all states that falsify it. The player
grows this decision tree until each leaf becomes pure (i.e., contains only good
or only bad states), or until a depth limit is reached. Loosely speaking, Bi-
nary Fission is the gamification version of DTInv, a decision tree based in-
variant learner [12]. Once a tree is built, we can trace down from the root
to a pure good node (a node composed of good states only) taking the con-



junction of predicates along the way. A conjunction of predicates from the
root of the tree to a leaf containing only good states is a likely invariant for
our program. Note that there may be several leaf nodes containing only good
states. We combine them into one likely invariant by forming a disjunction.

Fig. 6. Screenshot from Binary Fission

The set of predicates available to
player can be obtained from different
sources. Ideally, they are generated by
Xylem as discussed previously. Cur-
rently we seed this set using Daikon.

If the available predicates are not
sufficient to separate the good from
the bad states within a given tree-
depth, some leaf nodes will contain
both good and bad states. These
states are then taken aside and re-
entered as input into Xylem and/or
Daikon. Since these sets are smaller
than the initial set, Xylem and Daikon
are allowed to search for more com-
plex likely invariants (which would
otherwise be computationally expen-

sive and lead to many useless candidates).

Implementation Notes. The Chekofv system provides both games with sets of
states and collects the predicates and candidate invariants provided by the play-
ers. Chekofv uses Frama-C for abstract interpretation and extends it by several
plugins to extract the abstract state at particular program points, and to insert
likely invariants. This implements the steps Initialize and Update1 from our ab-
stract algorithm in Section 4. Note that Chekofv only samples states at entry
points of procedures and before procedure calls that precede Frama-C warnings.
As shown in Section 3 this is sufficient to find real bugs.

For practical reasons, we use the bounded model checker CBMC [13] instead
of symbolic execution to implement step Update2 from Section 4. We perform
minor program transformations (e.g., insert assumptions and non-determinism)
to make the result resemble a symbolic execution. The collected good and bad
states are stored in a database and serve as input to both games.

For testing, we also seed or database the sets of good and bad states from
the experiments in [12] and [18] to our database. The sets of good and bad
states differ greatly between the benchmarks. For example, the TCAS benchmark
in [18] comes with hundreds of states collected from dynamic execution, while
other benchmarks come with less than a dozen states obtained by symbolic
execution.

Step Update3 from Section 4 is realized by the two games; each game has
its own web server that pulls program states from the database and presents
them to the game client. Predicates produced by the players are sent back to



the server and stored in a database. Likely invariants generated from game play
are post-processed and then used by Frama-C, thus closing the loop in Figure 3.

6 Conclusion

We have presented an approach that uses crowdsourcing to learn likely invari-
ants that assist abstract interpretation. Our approach extends previous machine
learning based techniques by reformulating the machine learning problem of
finding a classifier that separates two sets as puzzle games.

Crowdsourcing the invariant learning has several potential benefits over ma-
chine learning: finding good and bad states is expensive and often only possible
to a limited extend. Hence, these sets are small which often causes machine
learning to over-fit and find correlations that may be true on the observed data,
but irrelevant (or even wrong) in the program. Crowdsourcing can avoid this
problem. First, given our natural limitations handling large amounts of data, we
believe that humans prefer shorter solutions that are less likely to overfit. Sec-
ond, crowdsourcing returns a diverse set of different likely invariants from which
we can choose. Beyond that, crowdsourcing is not limited by a set of templates
or kernel functions when constructing likely invariants. That is, unlike machine
learning, we do not have to limit the search space for likely invariants a priori.
This may lead to a more diverse set of invariants and allow us to discover invari-
ants and requires less interaction through the verification engineer, like trying
different kernel functions.

The games are now open to the public. We hope that the interested reader
will enjoy playing them and help us to collect valuable data along the way.

7 Acknowledgement

This work was supported in part by the National Science Foundation under
grant contracts CCF 1423296 and CNS 1423298, and DARPA under agreement
number FA8750-12-C-0225.

We gratefully acknowledge the contributions of our collaborators at UCSC
especially Kate Compton, Heather Logas, Joseph Osborn, Zhongpeng Lin, Dy-
lan Lederle-Ensign, Joe Mazeika, Afshin Mobrabraein, Chandranil Chakrabor-
tii, Johnathan Pagnutti, Kelsey Coffman, Richard Vallejos, Lauren Scott, John
Thomas Murray, Orlando Salvatore, Huascar Sanchez, Michael Shavlovsky, Daniel
Cetina, Shayne Clementi, Chris Lewis, Dan Shapiro, Michael Mateas, E. James
Whitehead Jr., at SRI John Murray, Min Yin, Natarajan Shankar, Sam Owre,
and at CEA Florent Kirchner, Boris Yakobowski.

References

1. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, 1977.



2. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
The astrée analyzer. In PLS. 2005.

3. P. Cousot, P. Ganty, and J.-F. Raskin. Fixpoint-guided abstraction refinements.
In SAS. 2007.

4. W. Dietl, S. Dietzel, M. D. Ernst, N. Mote, B. Walker, S. Cooper, T. Pavlik, and
Z. Popović. Verification games: Making verification fun. In Proceedings of the 14th
Workshop on Formal Techniques for Java-like Programs, pages 42–49. ACM, 2012.

5. M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,
and C. Xiao. The daikon system for dynamic detection of likely invariants. Sci.
Comput. Program.

6. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for java. In PLDI, 2002.

7. C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In
POPL, 2002.

8. P. Garg, C. Löding, P. Madhusudan, and D. Neider. Ice: A robust framework for
learning invariants. In CAV, 2014.

9. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In CAV,
jun 1997.

10. B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. In TACAS, 2008.
11. F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-C:

A Software Analysis Perspective. Formal Aspects of Computing, pages 1–37, Jan.
2015.

12. S. Krishna, C. Puhrsch, and T. Wies. Learning invariants using decision trees.
CoRR, 2015.

13. D. Kroening and M. Tautschnig. CBMC - C bounded model checker. In TACAS,
2014.

14. H. Logas, J. Whitehead, M. Mateas, R. Vallejos, L. Scott, D. Shapiro, J. Murray,
K. Compton, J. Osborn, O. Salvatore, et al. Software verification games: Designing
xylem, the code of plants. 2014.

15. R. Sharma and A. Aiken. From invariant checking to invariant inference using
randomized search. In CAV, 2014.

16. R. Sharma, S. Gupta, B. Hariharan, A. Aiken, and A. V. Nori. Verification as
learning geometric concepts. In SAS. 2013.

17. R. Sharma, A. V. Nori, and A. Aiken. Interpolants as classifiers. In CAV.
18. L. Zhang, G. Yang, N. Rungta, S. Person, and S. Khurshid. Feedback-driven

dynamic invariant discovery. In ISSTA, 2014.


	Gamifying Program Analysis

